成年生长激素缺乏动物模型与骨代谢相关研究进展
作者:
基金项目:

军队保健专项项目(编号:13BJZ13)。


Research progress of adult animal models of growth hormone deficiency and bone metabolism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | | | |
  • 文章评论
    摘要:

    目的 探讨成年生长激素缺乏动物模型的几种建立方法,为实验研究和治疗因生长激素缺乏引起的骨代谢异常提供良好的模型。方法 通过查阅文献,对成年生长激素缺乏动物模型的建立方法进行综述和评价。结果 成年生长激素缺乏动物模型可分为自发性生长激素缺乏动物模型、垂体切除动物模型、基因敲除模型三种。结论 垂体切除动物模型价格低廉,可操作性强,但受影响的因素较多,不适合于生长激素与骨代谢之间关系的研究;自发性生长激素缺乏动物模型与基因敲除动物模型价格高昂,但特异性缺乏生长激素,利于研究生长激素缺乏对骨代谢的影响。

    Abstract:

    Objective To explore the establishment methods of animal models of adult growth hormone deficiency, and to provide a good model for experimental research and treatment for abnormal bone metabolism caused by growth hormone deficiency.Methods The methods of establishment of animal models of adult growth hormone deficiency were reviewed and evaluated refering to literature.Results There were three methods including spontaneous lack-of, pituitectomized and gene knockout can establish animal models of adult growth hormone deficiency. Conclusions Hypophysectomized animal models are inexpensive and easy to create, but not suitable for studying the relationship between growth hormone and bone metabolism.Spontaneous lack-of and gene knockout models are specific growth hormone deficiency and of great research significance in exploring the relationship between growth hormone and bone metabolism.

    参考文献
    [1] Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton[J]. Endocrine Rev, 2008, 29(5):535-559.
    [2] Yakar S, Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis:lessons from mouse models[J].Growth Horm IGF Res, 2015, Sep 28. pii:S1096-6374(15)30031-9. doi:10.1016/j.ghir.2015.09.004.[Epub ahead of print]..
    [3] Perrini S, Laviola L, Carreira MC, et al. The GH/IGF1 axis and signaling pathways in the muscle and bone:mechanisms underlying age-related skeletal muscle wasting and osteoporosis[J]. J Endocrinol, 2010, 205(3):201-210.
    [4] Ohlsson C, Mohan S, Sjogren K, et al. The role of liver-derived insulin-like growth factor-I[J].Endocrine Rev, 2009, 30(5):494-535.
    [5] Baroncelli GI, Bertelloni S, Sodini F, et al. Acquisition of bone mass in normal individuals and in patients with growth hormone deficiency[J]. J Pediat Endocrinol Metab.2003, 16(Suppl 2):327-335.
    [6] Waters MJ, Kaye PL. The role of growth hormone in fetal development[J]. Growth Hormone IGF Res, 2002, 12(3):137-146.
    [7] Van der Eerden BCJ, Karperien M, Wit JM, et al. Systemic and local regulation of the growth plate[J]. Endocrine Rev, 2003, 24(6):782-801.
    [8] Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis:inference from a cross-sectional model[J]. J Clin Invest, 1994, 93(2):799-808.
    [9] Shibli JA, AguiarK, Melo L, et al. Histological comparison between implants retrieved from patients with and without osteoporosis[J]. Int J Oral Maxillofac Surg, 2008, 37(4):321-327.
    [10] Zadik ZVI, Chalew A, Mccarter Jr RJ, et al. The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals[J]. J Clin Endocrinol Metab, 1985, 60(3):513-516.
    [11] Veldhuis JD, Bowers CY. Human GH pulsatility:an ensemble property regulated by age and gender[J]. J Endocrinol Invest, 2003, 26(9):799-813.
    [12] Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness[J]. Biogerontology, 2008, 9(4):213-228.
    [13] Giustina A, Mazziotti G, Canalis E, et al. Growth hormone, insulin-like growth factors, and the skeleton[J]. Endocr Rev, 2008, 29(5):535-559.
    [14] Charlton HM, Clark RG, Robinson I, et al.Growth hormone-deficient dwarfism in the rat:a new mutation[J].J Endocrinol, 1988, 119(1):51-58.
    [15] Nogami H, Takeuchi T. Increased population of nonhormone-producing cells suggests the presence of dysfunctional growth hormone cells in the anterior pituitary gland of the spontaneous dwarf rat[J]. Neuroendocrinology, 1993, 57(2):374-380.
    [16] Pan W, Kastin AJ. Interactions of IGF-1 with the blood-brain barrier in vivo and in situ[J].Neuroendocrinology, 2000, 72(3):171-178.
    [17] Nieves-Martinez E, Sonntag WE, Wilson A, et al. Early-onset GH deficiency results in spatial memory impairment in mid-life and is prevented by GH supplementation[J]. J Endocrinol, 2010, 204(1):31-36.
    [18] Bailey-Downs LC, Sosnowska D, Toth P, et al. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats:implications for vascular aging[J].Gerontol A Biol Sci Med Sci, 2012, 67(6):553-564.
    [19] Sonntag WE, Bennett C, Ingram R, et al. Growth hormone and IGF-I modulate local cerebral glucose utilization and ATP levels in a model of adult-onset growth hormone deficiency[J]. Am J Physiol Endocrinol Metab, 2006, 291(3):604-610.
    [20] Yan H, Mitschelen M, Bixler GV, et al. Circulating IGF1 regulates hippocampal IGF1 levels and brain gene expression during adolescence[J].Endocrinol, 2011, 211(1):27-37.
    [21] Carter CS, Ramsey MM, Sonntag WE. The growth hormone IGF-1 axis and mammalian aging[M]. In:Handbook of the Biology of Aging, edited by Masoro EJ and Austad SN. Elsevier, 2005.
    [22] Hua K, Forbes ME, Lichtenwalner RJ, et al. Adult-onset deficiency in growth hormone and insulin-like growth factor-I alters oligodendrocyte turnover in the corpus callosum[J]. Glia, 2009, 57(10):1062-1071.
    [23] Bengtsson BA, Eden S, Lonn L, et al. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH[J]. J Clin Endocrinol Metab, 1993, 76(2):309-317.
    [24] Sun LY, Evans MS, Hsieh J, et al. Increased neurogenesis in dentate gyrus of long-lived Ames dwarf mice[J]. Endocrinology, 2005, 146(3):1138-1144.
    [25] Walser M, Hansén A, Svensson PA, et al. Peripheral administration of bovine GH regulates the expression of cerebrocortical beta-globin, GABAB receptor 1, and the Liss encephaly-1 protein (LIS-1) in adult hypophysectomized rats[J]. Growth Horm IGF Res, 2011, 21(1):16-24.
    [26] Aberg ND, Johansson I, Aberg MAI, et al. Peripheral administration of GH induces cell proliferation in the brain of adult hypophysectomized rats[J]. J Endocrinol, 2009, 201(1):141-50.
    [27] Alba M, Salvatori R. A Mouse with targeted ablation of the growth hormone-releasing hormone gene:A new model of isolated growth hormone deficiency[J]. Endocrinology, 2004, 145(9):4134-43.
    [28] Greenhalgh CJ, Rico-Bautista E, Lorentzon M, et al. SOCS2 negatively regulates growth hormone action in vitro and in vivo[J]. J Clin Invnest, 2005, 115(2):397-406.
    [29] Kasukawa Y, Baylink DJ, Guo R, et al.Evidence that sensitivity to growth hormone (GH) is growth period and tissue type dependent:studies in GH-deficient lit/lit mice[J].Endocrinology, 2003, 144(9):3950-3957.
    [30] Evans B, Warner JT, Elford C, et al. Morphological determinants of femoral strength in growth hormone-deficient transgenic growth-retarded (Tgr) rats[J]. J Bone Miner Res, 2003, 18(7):1308-1316.
    [31] Luque RM, Amargo G, Ishii S, et al. Reporter expression, induced by a growth hormone promoter-driven Cre recombinase (rGHp-Cre) transgene, questions the developmental relationship between somatotropes and lactotropes in the adult mouse pituitary gland[J]. Endocrinology, 2007, 148(5):1946-1953.
    [32] Buch T, Heppner FL, Tertilt C, et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration[J]. Nat Methods, 2005, 2(6):419-426.
    [33] Luque RM, Lin Q, Córdoba-Chacón J, et al. Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD) due to destruction of pituitary somatotropes[J].PLoS One, 2011, 6(1):e15767.
    [34] Bouchoucha YX, Charnay P, Gilardi-Hebenstreit P. Ablation of Egr2-positive cells in male mouse anterior pituitary leads to atypical isolated GH deficiency[J].Endocrinology, 2013, 154(1):270-282.
    [35] Yakar S, Adamo ML. Insulin-like growth factor 1 physiology:lessons from mouse models[J]. Endocrinol Metab Clin North Am, 2012, 41(2):231-247.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁人飞,邓伟民,韩丽萍,陈小香,苏海容.成年生长激素缺乏动物模型与骨代谢相关研究进展[J].中国实验动物学报,2016,24(2):208~212.

复制
分享
文章指标
  • 点击次数:1203
  • 下载次数: 1288
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-10-23
  • 在线发布日期: 2016-04-28
文章二维码
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭