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[ Abstract] Transgenic 5 x FAD mice are APP/PSI transgenic mice carrying five familial Alzheimer’ s disease
(AD) gene mutations. Beta-amyloid precursor protein ( amyloid precursor protein, APP) expression is related to the
K670N/M671L (Swedish) , 1716V (Florida), and V7171 (London) mutations, and presenilin 1 ( PS1) is affected by
the M146L. and 1286V mutations. 5 X FAD mice express high levels of B-amyloid in the brain at 1.5 months old, and
neuritic plaques began to appear at 2 months old. The pathological phenotypes of 5 X FAD mice include amyloid plaque
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aggregation, neuronal loss, gliosis, and memory dysfunction, while their biological characteristics include changes in the
formation of brain (B-amyloid plaques, hyperphosphorylation of Tau protein, synaptic dysfunction, neuroinflammatory
response, mitochondrial dysfunction, blood-brain barrier injury, neuronal injury, endoplasmic reticulum stress, and eye
lesions. As a classic animal model of AD, 5 X FAD transgenic mice can simulate the neuropathological process and
behavioral manifestations of late-stage AD in humans, and these mice are thus widely used in research into the pathogenesis
of AD and the development of new drugs. In this review, we summarize the model construction, biological background, and
biological characteristics of 5 X FAD transgenic mice, and the development and application of drugs for the prevention and
treatment of AD, to provide references for the application of 5 X FAD transgenic transgenic mice in AD research.
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Table 2 Behavioral characteristics of 5 X FAD transgenic mice
Cognitive type Methods Months Sex Control mice Period of detection Index Change
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Cognitive type Methods Months Sex Control mice Period of detection Index Change
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Table 3 Pathological characteristics of 5 X FAD transgenic mice

Index Methods Control Months Part Change
™ [34]
THC Wi 2 Cerebral cortex f
THC WT ~ 63
>~ 6 Hippocampus and cerebral cortex !
AB DG
IH T (58]
AB aggregation ¢ W 6 Hippocampal DG areas f
. 1
ippocampus
MSD wT 4.6 1204
Whole-brain N
kY . [40]
p-Tau ELISA T 6 Cerebral cortex and serum f
DG
FAP Ibal IF T Lee)
¢ e W 4 Cerebral cortex and hippocampal DG areas f
DG
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Neuronatrophy 6 Cerebral cortex and hippocampal DG areas f
BS T e7]
Dendritic length W 4 Hippocampus !
S [48]
BS Wt 6.12 Cerebral cortex !
Number of dendritic spines n
umber of dendritic spines BS 6 5 x FAD s ‘ !
6 months old 5 X FAD Cerebral cortex
B T [62-63]
Number of synapses S W 6 Pyramidal cells in the somatosensory cortex !
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Synaptic neurotransmitter vesicles 4 Hippocampus and cerebral cortex !
BS wT 12165 l

Number of neurons Nissl wWT gl34] Layer 5 of cerebral cortex !
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Table 4 Physiological and biochemical phenotypes of 5 X FAD transgenic mice

Biochemical phenotype Methods Months Part Results
AB4, ELISA 4 ~ gl3] Whole-brain 1
AByo ELISA 4 ~ 9B Whole-brain 1
SYP ELISA 4 ~ 9B Whole-brain 1
Syntaxin Western Blot 4—1233.48.68] N Hippocampus, cerebral cortex 1
RS Cerebral cort |
PSD-95 Western Blot e | orebi cofiex
412134868 N Hippocampus, cerebral cortex !
P25 Western Blot 3.9 1204 Cerebral cortex 1
4l40] Non-fasting plasma -
Cholesterol Analysis of glucose 12[46] Thalamus !
6.9157.79-81] Half brain homogenate 1
BACE1 Western Blot ;
614 Cerebral cortex 1
TNF-a ELISA 4L75] Frontal cortex il
APOE GFAP qPCR 6% DG Hippocampal DG areas 1
18 qRT-PCR 6140 Cerebral cortex 1
g Western Blot 3L74] Hippocampus 1
Fli-1 mRNA PCR 6 50761 N Hippocampus, cerebral cortex 1
IL-6 THC ’ Hippocampus
miR-128 qRT-PCR gl77] Hippocampus !
2.2 5 x FAD o2t , 5 xFAD
b ’3 o
AB 93 , 5 x FAD ,
[46]
A Y b o
, 2.3 5 xFAD
[94]
b b ’
[95-96]
o b o b
[97] , [103] . AB Ca2+ ,
[98] 5 Ca2+ [104] i AD
, AB, , (receptor for
(341 advanced glycation endproducts, RAGE )
105
AB ,AB T
. 5 x FAD I
AD (991 (NADH- ) Fe-S ,
2 ( triggering receptor expressed on ,
myeloid cells 2, TREM2) AD )
, 75 x FAD 9
OO TREM2 5 x FAD ,
, ( adeno-associated ATP
virus, AAV) TREM2 5 x I oy
FAD , 5 x FAD .
58 [64]
B3 5 x FAD ,
, , 5 x FAD

5 x FAD 5

b
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AD o ,5 x FAD UPR ,
2.4 5 x FAD BT APP
, AD PS1 ERS UPR
. , 5 X FAD ERS,
, AD 1.0 ~ 1.5 APP  PSI
o ,ERS
; ; AB 5 x
[108-109] FAD UPR, AD
, , , AD
[110-111] UPR
AD . e , 5 x FAD
[112]
(electron paramagnetic resonance, EPR) °
5 x FAD 2.7 5 xFAD
[106] AD ,
( prothrombin,, PRO) 2( prokineticin °
receptor 2,PKR2) 5 x FAD \ N N
[74] hY N Y
5 x FAD , °
AB () 3 5 x FAD
[114] . AB42
[115] [116] AD , 5 x FAD
2.5 5 xFAD AB.,
1215 x FAD
, AD -B (oligomers of amyloid-B,ABO) '*! |
[117-118] . AD , AB Tau ABO AD
’ ’ AB )
. AB AR AB e
[119] ,5 x FAD
[120] ,AB 5 X
4 5 x FAD FAD : AP :
12 5 S , ,5 x FAD
. 5 x FAD :
AD , B Y . Tau
AD Tau
2.6 5 xFAD 3 5 x FAD AD
5 5 x FAD AD
x FAD ( unfolded protein , AD ,
response, UPR) Western Blot WT AD ( 5,
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AD

Table 5 Application of 5 X FAD transgenic mice in the development of anti-AD drugs

Dement, 2023, 19(4) . 1598-1695.

FERRETTI L, MCCURRY S M, LOGSDON R, et al. Anxiety

[13]

Drug types Therapeutic Administration Administration Du'ra'llon (.)f Month Methods Results
dosage mode administration ages
[45]
Gossypetin 10 mg/ke Gavage old 1.6 MwM Number of target crossing
[43]
Pteryxin 16 mg/ke Subcutaneous injections 7d 12 MwM Time in the target quadrant
[42]
Eugenol 30 mg/ke Gavage 30d 1 MwM Time in the target quadrant
' 100, 300 and g4 d NES BM o
Traditional Theracurmin 1000 mg/kg Gavage Time in the target quadrant
Chinese . . (a1]
medicine PF 5 me/kg Subcutaneous injections 28« 6 MwM Escape latency
[126]
4 3, 25 pe/ke Subcutaneous injections 60.d 3 MwM Escape latency
[48]
SLEP 100 me/ke Gavage 60 d 6.12 MwM Time in the target quadrant
o [40]
OABL 20 mg/kg Subcutaneous injections 20d 6 MwM Time in the target quadrant
MOS 0.12%, w/v 56 d 0.5 MWM
Gavage Escape latency
Chemical drugs 10. 20 and
D ’ - 9]
3N 40 mg/kg Subcutaneous injections 28d >~ 6 BM Total errors
and Alzheimer’ s disease [ J]. J Geriatr Psychiatry Neurol,
4 2001, 14(1): 52-58.
[ 5] ISMAIL Z, SMITH E E, GEDA Y, et al. Neuropsychiatric
5 x FAD AD _— .
symptoms as early manifestations of emergent dementia:
provisional diagnostic criteria for mild behavioral impairment
AD [J]. Alzheimers Dement, 2016, 12(2): 195-202.
AD [ 6] PIETRZAK R H, LIM Y Y, NEUMEISTER A, et al. Amyloid-
B, anxiety, and cognitive decline in preclinical Alzheimer
’ AD © disease: a multicenter, prospective cohort study [J]. JAMA
5 x FAD AD Psychiatry, 2015, 72(3) ; 284-291.
AD [ 7] TANZI R E, BERTRAM L. Twenty years of the Alzheimer’ s
b b
FAD ’ 5 x FAD disease amyloid hypothesis: a genetic perspective [ J]. Cell,
2005, 120(4) . 545-555.
APP ; BRIRS [ 8] TROJANOWSKI J Q, LEE V M Y. Pathological tau: a loss of
FAD AB42/AB40 AD, normal function or a gain in toxicity? [ J]. Nat Neurosci, 2005,
5 x FAD AB42 AD 8(9): 1136-1137.
[ 9] GUERRIERO F, SGARLATA C, FRANCIS M, et al.
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