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[ Abstract]  Organoids have become an important technological platform in cancer research, but simulating the
primary tumor tissue structure and function still presents problems. The development of gene-editing technology,
especially when combined with tumor organoids, provides a new approach for accurately and comprehensively
simulating the in vivo characteristics of tumor models. Introducing specific gene mutations or correcting mutations in
tumor organoids through gene-editing technology can allow detailed analysis of the mechanisms of tumor initiation and
progression, as well as exploring potential therapeutic targets, accelerating the drug-screening process, and providing
new insights for personalized cancer treatment. This article reviews the formation of tumor organoids and the technical

aspects of gene-editing strategies, emphasizing their unique applications and prospects in tumor organoids. We also
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propose that accurately simulating the in vivo microenvironment, promoting the standardization and stability of organoid

gene-editing technology, and optimizing the efficiency of gene editing can accelerate the application of organoids in

precision medicine research.
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