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　 　 【摘要】 　
 

帕金森病(Parkinson’ s
 

disease,PD)的核心病理特征是 α-突触核蛋白(α-synuclein)的异常聚

集及其引发的神经元损伤,α-突触核蛋白在形成寡聚体或原纤维的形式时具有毒性作用,通过线粒体功能障

碍、囊泡转运障碍、多巴胺自发氧化以及神经炎症等多重途径导致神经元死亡。 此外,α-突触核蛋白可以在细

胞间传播,通过外泌体、胞吞胞吐、隧道纳米管(tunneling
 

nanotube,
 

TNT)或迷走神经轴突运输扩散,形成级联

病理效应。 以 α-突触核蛋白为关键病理特征的 PD 动物模型作为致病机制的阐明、以及 PD 相关治疗药物研

发的模拟工具,目前利用转基因、细菌人工染色体(bacterial
 

artificial
 

chromosome,BAC)、病毒介导过表达及基

因编辑等多种策略已开发的 α-突触核蛋白过表达动物模型助推了 PD 与 α-突触核蛋白的探索研究。 本文系

统地综述了 α-突触核蛋白的结构功能、毒性作用机制、细胞间传播途径、过表达动物模型以及其作为治疗靶

点的研究进展。
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　 　 【Abstract】　
 

The
 

core
 

pathological
 

feature
 

of
 

Parkinson’ s
 

disease
 

( PD)
 

is
 

the
 

abnormal
 

aggregation
 

of
 

α-
synuclein

 

and
 

the
 

result
 

ing
 

neuronal
 

damage.
 

α-Synuclein
 

exhibits
 

toxic
 

effects
 

when
 

it
 

forms
 

oligomers
 

or
 

fibrils,
 

leading
 

to
 

neuronal
 

death
 

via
 

multiple
 

pathways,
 

including
 

mitochondrial
 

dysfunction,
 

impaired
 

vesicular
 

trafficking,
 

dopamine
 

auto-oxidation,
 

and
 

neuroinflammation.
 

In
 

addition,
 

α-synuclein
 

can
 

propagate
 

between
 

cells
 

via
 

exosomes,
 

endocytosis / exocytosis,
 

tunneling
 

nanotubes,
 

or
 

vagal
 

nerve
 

axonal
 

transport,
 

creating
 

a
 

cascade
 

of
 

pathological
 

effects.
 

Animal
 

models
 

of
 

PD
 

that
 

recapitulate
 

the
 

key
 

pathological
 

hallmark
 

of
 

α-synuclein
 

accumulation
 

are
 

indispensable
 

tools
 

for
 

elucidating
 

disease
 

mechanisms
 

and
 

developing
 

novel
 

therapeutic
 

interventions.
 

To
 

date,
 

various
 

strategies,
 

including
 

transgenic
 

techniques,
 

bacterial
 

artificial
 

chromosome
 

(BAC)-mediated
 

expression,
 

viral
 

vector-mediated
 

overexpression,
 

and
 

gene
 

editing,
 

have
 

been
 

employed
 

to
 

develop
 

α-synuclein
 

overexpression
 

animal
 

models.
 

These
 

models
 

have
 

significantly
 

advanced
 

our
 

exploration
 

of
 

the
 

relationship
 

between
 

PD
 

and
 

α-synuclein.
This

 

systematic
 

review
 

considers
 

the
 

structure
 

and
 

function
 

of
 

α-synuclein,
 

its
 

mechanisms
 

of
 

toxicity,
 

intercellular
 

propagation
 

pathways,
 

animal
 

models
 

of
 

overexpression,
 

and
 

potential
 

therapeutic
 

targets
 

based
 

on
 

its
 

pathogenic
 

mechanisms.
【Keywords】　 α-synuclein;

 

oligomers;
 

dopaminergic
 

neurons;
 

substantia
 

nigra;
 

gut-brain
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　 　 帕金森病(Parkinson’s
 

disease,PD)是仅次于

阿尔茨海默症的全球第二大常见的神经退行性

疾病,其临床症状包括静止性震颤、肌强直、运动

缓慢及姿势失衡等运动障碍,同时可能伴有认知

障碍、睡眠障碍、自主神经功能障碍、抑郁等非运

动症状[1] 。 我国是 PD 高发地区,65 岁以上老年

人群中 PD 的患病率约为 1. 7%,80 岁以上人群则

上升至 4%[2-3] 。 我国 PD 患者已经达到 300 万

人,估计到 2030 年,将增加到 478. 7 万,占全球

PD 患者的一半[4-6] 。 PD 已经是仅次于肿瘤和心

脑血管疾病,严重威胁中老年人群健康的第三大

杀手[7] 。 PD 的直接病因是中脑黑质( substantia
 

nigra,SN)和纹状体( striatum,Str) 的多巴胺能神

经元损伤导致多巴胺合成不足,当黑质神经元的

丢失 超 过 70%
  

~
  

80% 时, 将 会 出 现 临 床 症

状[8-10] 。 另外,PD 患者的中枢神经系统中 α-突
触核蛋白会在神经元内聚集并形成路易小体

(Lewy
 

body, LB ) 和路易神经突 ( Lewy
 

neurite,
LN),这是 PD 的主要组织学标志[11-12] 。 尽管造

成多巴胺能神经元损伤的机制尚未清楚,α-突触

核蛋白已被证明在 PD 的发生和发展中起重要作

用,并且一直是神经退行性疾病研究的焦点[13] 。
过去数十年间,研究人员对 α-突触核蛋白的结

构、生理功能及其病理毒性机制进行了深入探

索,但其在神经元的生理功能、异常聚集的分子

驱动因素,以及跨细胞传播的机制仍存在诸多未

解之谜。 本文通过总结近年来关于 α-突触核蛋

白的研究进展,包括 α-突触核蛋白的结构功能、
毒性作用机制、细胞间传播途径等等,旨在为深

入理解 α-突触核蛋白病的病理机制以及开发用

于 PD 治疗的新型策略提供理论依据。

1　 SNCA 基因

在神经退行性疾病的研究中,对基因层面的

研究是非常热门的,目前已确定 90 多个遗传风险

位点与 PD 发病相关[14-16] 。 在临床上大多数 PD
都是散发的,只有 5%

  

~
  

15%的病例是有家族史

的[17-18] ,其风险基因通常都是从家族性 PD 病例

中检测出来,再在散发性 PD 病例中研究其关联

性[19] 。 PARK 基因家族是指 PD 的致病基因家

族,这些基因最初通过家系连锁分析被发现,并
以数字后缀代表其被发现的时间顺序命名为

PARK1 到 PARK18。 PARK 基因家族在维持神经

元功能、蛋白质稳态、线粒体功能和抵御氧化应

激等方面发挥重要作用,其突变则可能直接或间

接造成神经元损伤而增加患病风险[20-22] 。 其中

PARK1 和 PARK4 分别是指 SNCA 基因的突变体

(如 A53T、A30P、E46K、H50Q 和 G51D) 和 SNCA
基因三倍体异常导致 α-突触核蛋白异常聚集,形
成毒性寡聚体和纤维,引发神经元功能障碍和死

亡[23-24] 。 1997 年, POLYMEROPOULOS 等[25] 首

次在意大利和希腊的家族性 PD 家系中发现了

SNCA 基因的 A53T 突变体,并证实其与 PD 的发

病直接相关。 之后又在德国的一个家族性 PD 家

系中发现了 A30P 突变体[26] ,在意大利的一个家

族性 PD 家系中发现 SNCA 基因三倍体异常[27] 。
研究发现,SNCA 基因突变可能是通过改变蛋白

质构象[28-30] 、干扰溶酶体降解途径[31-32] 、改变与
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脂质膜的相互作用[33-34] 和增加翻译后修饰[35] 等

多种机制促进 α-突触核蛋白的异常聚集,但是生

理性 α-突触核蛋白是如何形成病理聚集体的具

体机制尚未清楚。

2　 α-突触核蛋白的结构

α-突触核蛋白是一种主要在中枢和周围神经

系统中的神经元表达,以及在血细胞和其他组织

中均可检测到少量表达的水溶性小分子蛋白[36] ,
其共有 140 个氨基酸残基,分子量约为 14

 

kDa,与
β-突触核蛋白和 γ-突触核蛋白一起构成突触核

蛋白家族[37] 。 α-突触核蛋白的结构可细分为

1
  

~
  

60 位氨基酸的碱性 N 末端、61
  

~
  

95 位氨基

酸的非淀粉样蛋白组分的疏水核心和 96
  

~
  

140
位氨基酸的酸性 C 末端[37] 。 α-突触核蛋白的碱

性 N 末端具有 7 个 11 位氨基酸不完全重复序列,
其中包含一个 KTKEGV 的共有序列[38] ,该序列

在物种间和突触核蛋白家族间高度保守[37] ,并且

其碱性 N 末端能够形成两亲性的 α-螺旋结构,使
其能够与磷脂膜结合[39-40] 。 α-突触核蛋白的中

间疏水区域被鉴定为阿尔茨海默症( Alzheimer’ s
 

disease,AD) 患者大脑中 β-淀粉样蛋白 ( beta-
amyloid,Aβ)沉积中的非淀粉样成分,也称 NAC
区域[41] ,α-突触核蛋白的 NAC 区域可以与 β-淀
粉样蛋白相互作用, 促进 β-淀粉样蛋白的聚

集[42] 。 另外,NAC 区域是 α-突触核蛋白形成病

理性聚集的核心驱动因素,当删除了部分 NAC 区

域(残基 71
  

~
  

82)后,α-突触核蛋白丧失了在体

外形成纤维的能力[43] 。 α-突触核蛋白的酸性 C
末端的蛋白序列在突触核蛋白家族和物种之间

都存在极大差异[44] ,其通常会发生多种翻译后修

饰,这些翻译后修饰可能在调节 α-突触核蛋白的

结构、功能和毒性作用[45] 。 病理性的 α-突触核蛋

白的 C 末端的 Ser129 位点通常会发生磷酸化,研
究发现在体外 Ser129 位点的磷酸化可以促进原

纤维的形成[46] 。 在路易小体病理结构中很大一

部分(约 15%)的 α-突触核蛋白是 C 端截短的,C
端截短会导致电荷屏蔽作用丧失,暴露 NAC 疏水

区域,促进 α-突触核蛋白聚集[47-48] 。 α-突触核蛋

白主要定位于神经元的突触前末梢和细胞核[49] ,
被合成后通常是以游离的没有折叠的单体存

在[50] 。 在生理状态下,α-突触核蛋白通过其 N 端

的重复基序与自身相互作用,组装形成富含 α 螺

旋结构的四聚体[51-52] ,这种四聚体可能与 α-突触

核蛋白的某些生理功能相关,而单体和四聚体的

形式会形成一种动态平衡,如果平衡被打破可能

会使 α-突触核蛋白趋于聚集[53] 。 而 SNCA 基因

突变有可能是因为破坏了 N 端的重复基序,扰乱

四聚体或多聚体形成,促使 α-突触核蛋白形成寡

聚体或原纤维。

3　 α-突触核蛋白的生理功能

前面介绍 α-突触核蛋白的结构时提到 α-突
触核蛋白的 N 末端折叠为两亲性的 α 螺旋有助

于 α-突触核蛋白与脂质膜结合[54] ,特别是与酸性

脂质膜和高曲率的脂质膜,这种结合有助于其在

细胞内的定位和功能[55] ,单体的 α-突触核蛋白通

过其 N 末端两亲性螺旋的不对称插入诱导膜弯

曲[56] ,并且已经证明了 α-突触核蛋白具有诱导膜

弯曲并将大囊泡转化为高度弯曲的膜小管和囊

泡的功能[57-58] ,α-突触核蛋白还可以感知脂质堆

积缺陷并诱导脂质横向扩张导致膜重塑[59-60] ,也
就是说 α-突触核蛋白可能参与脂质膜的切割、发
生和重塑,该功能对突触前末梢的囊泡存储和快

速释放至关重要。 另外,α-突触核蛋白还可以与

脂肪酸直接结合,并在其一级结构的 N 末端和 C
末端分别检测到一个与脂肪酸结合蛋白特征同

源的基序[61] ,说明 α-突触核蛋白可能参与了神经

元细胞质与膜磷脂区室之间脂肪酸的运输。 但

具有争议的是 LÜCKE 等[62] 研究认为,α-突触核

蛋白与脂肪酸存在直接相互作用,但 α-突触核蛋

白不太可能充当细胞内脂肪酸载体。
α-突触核蛋白在突触前末梢高度富集,并可

以直接与可溶性 N-乙基马来酰亚胺敏感因子附

着 蛋 白 受 体 蛋 白 ( soluble
 

N-ethylmaleimide-
sensitive

 

factor
 

attachment
 

protein
 

receptor,
SNARE)、突触蛋白-2( synaptophysin-2) 和囊泡相

关膜蛋白 2(vesicle-associated
 

membrane
 

protein
 

2,
VAMP2)结合,促进突触囊泡的聚集和 SNARE 复

合物的组装[63-65] ,这对于突触囊泡的融合和神经

递质的释放至关重要,但其发挥功能的结构和分

子机制尚不明确。 有研究表明,α-突触核蛋白与

VAMP2 相互作用,可以抑制 α-突触核蛋白形成

聚集体和起到突触小泡胞吐功能的制动器作

2431
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用[66-67] 。 MURPHY 等[68] 使 用 反 义 寡 核 苷 酸

(antisense
 

oligonucleotide,ASO)敲低 α-突触核蛋

白后远端囊泡池显著减小,表明 α-突触核蛋白具

有调节成熟神经元突触囊泡池大小的功能。 这

些研究结果都指向 α-突触核蛋白具有调控突触

囊泡转运和神经递质释放的功能,但令人费解的

是,在敲除或过表达 α-突触核蛋白的条件下,分
别有报道 α-突触核蛋白能促进[69] 或者抑制[70] 神

经递质释放,或者根本没有影响[71] ,表明 α-突触

核蛋白对神经递质的释放不是简单的促进或抑

制,而是有更复杂的调控网络。

4　 α-突触核蛋白聚集体的毒性机制

4. 1　 线粒体功能障碍及 Ca2+
 

失调

目前关于 α-突触核蛋白是如何对神经元产

生毒性作用的分子机制仍然是未完全清楚的,
α-突触核蛋白从寡聚体、原纤维到纤维体逐步聚

合形成路易小体,通过电子显微与超分辨率成像

发现,路易小体内除了 α-突触核蛋白纤维体还包

含细胞器碎片与脂质[72-73] ,多数研究认为主要是

寡聚体和原纤维形式的 α-突触核蛋白对神经元

起毒性作用[74-75] ,而包涵体的形成可能是神经元

的一种自我保护现象[76] 。 有研究发现,诱导 α-突
触核蛋白聚集可以破坏线粒体代谢,导致线粒体

去极化和 ATP 产生降低,并通过心磷脂外化诱导

线粒体自噬,而单独过表达 α-突触核蛋白则不会

诱导线粒体降解[77] 。 PLOTEGHER 等[78] 在 SH-
SY5Y 细胞中过表达 α-突触核蛋白后部分细胞形

成了 α-突触核蛋白寡聚体,而在呈递寡聚体的细

胞中线粒体形态发生了改变,表明可能是 α-突触

核蛋白寡聚体导致了线粒体功能失调。 GEIBL
等[79] 将体外合成的重组 α-突触核蛋白预成原纤

维(preformed
 

fibrils,PFFs)注射到小鼠黑质中在

12 周后观察到神经元中线粒体数量明显减少,并
严重扰乱了线粒体三磷酸腺苷的生成。 有研究

发现,α-突触核蛋白与线粒体外膜转运复合体

TOM 复合物的亚基 TOM20 蛋白以高亲和力结

合,这 种 结 合 阻 止 了 TOM20 与 其 辅 助 受 体

TOM22 的相互作用,导致核编码的线粒体蛋白无

法进入线粒体,造成线粒体呼吸不足,活性氧

(reactive
 

oxygen
 

species, ROS) 产生增加[80] 。 另

外,α-突触核蛋白寡聚体还可以和 TOM40 结合并

诱导其降解,导致线粒体功能障碍[81] 。 有研究报

道,Ser129 位点磷酸化的 α-突触核蛋白寡聚体可

以抑制线粒体复合物Ⅰ的活性,导致 ATP 合成不

足和 ROS 水平升高[82-84] ,而过表达 α-突触核蛋

白的细胞对蛋白复合体Ⅰ抑制剂鱼藤酮更加敏

感[85] 。 野生型或突变型的 α-突触核蛋白还可以

与线粒体呼吸链的关键酶细胞色素 C 氧化酶

(cytochrome
 

c
 

oxidase,COX)相互作用[86] ,α-突触

核蛋白单体还可以与 ATP 合酶相互作用并提高

其效率[87] 。 这些证据表明 α-突触核蛋白与线粒

体功能密切相关,其异常聚集可以通过线粒体功

能障碍造成神经元损伤,尤其是具有广泛轴突树

枝化和对线粒体活性高要求的多巴胺能神经元

更容易受到 α-突触核蛋白聚集的影响,但关于 α-
突触核蛋白如何作用线粒体并导致线粒体损伤

的机制还有待阐明。
此外,α-突触核蛋白聚集体可以与高尔基体

Ca2+
 

/ Mn2+
 

泵、肌浆网 / 内质网钙离子 ATP 酶或生

物膜相互作用,影响 Ca2+
 

信号传导,尤其是寡聚

α-突触核蛋白,最终导致胞质 Ca2+
 

过载和 Ca2+
 

依

赖性细胞死亡[88-90] 。 当神经元胞质内的 Ca2+
 

平

衡被破坏,维持跨膜电化学梯度所需要的 ATP 则

会增加,同样会导致神经元脆性增加[91] 。 有研究

发现,Ca2+
 

和氧化应激协同促进 α-突触核蛋白聚

集[92] ,α-突触核蛋白 A53 T 突变体在线粒体膜上

被心磷脂触发并快速形成寡聚体,促使线粒体功

能障碍和产生 ROS[93] ,α-突触核蛋白通过增加内

质网与线粒体的接触,促进线粒体从内质网中摄

取 Ca2
 

+
 

[94-96] 。 这一机制进一步在 Gba 基因突变

小鼠模型中被证实,线粒体氧化应激显著加剧

α-突触核蛋白的聚集与扩散[97] ,提示 Ca2+
 

升高在

α-突触核蛋白聚集中起到重要作用,α-突触核蛋

白驱动 Ca2+
 

失调是其细胞毒性的关键。
4. 2　 囊泡运输障碍及多巴胺自发氧化

有研究在多种细胞模型中过表达 α-突触核

蛋白会导致细胞内质网应激、内质网-高尔基体囊

泡运输障碍和氧化应激。 在 PC12 细胞中过表达

α-突触核蛋白发现内质网应激标记物 GRP78 和

eIF-2a 表达上调[98] 。 在酵母中过表达 α-突触核

蛋白后表现出内质网到高尔基体囊泡的运输阻

塞[99] 。 在 COS-7 细胞模型中,前纤维 α-突触核蛋

白聚集体形成导致高尔基体碎裂和随后的运输
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障碍[100] 。 在哺乳动物肾和神经内分泌细胞中过

表达野生型或突变型 α-突触核蛋白导致内质网

到高尔基体的转运延迟高达 50%,突变型的抑制

作用更强,而 R 型 SNARE 的共同过表达可以特

异性挽救内质网到高尔基体的转运,表明病理性

的 α-突触核蛋白拮抗 SNARE 功能[101] 。 在 SH-
SY5Y 细胞中过表达野生型或突变型的 α-突触核

蛋白导致细胞内 ROS 水平升高,并且出现较多的

细胞死亡[102] 。 黑质神经元中的囊泡单胺转运蛋

白 2(vesicular
 

monoamine
 

transporter
 

2,VMAT2)主
要负责将单胺类神经递质(如多巴胺、5-羟色胺、
去甲肾上腺素、肾上腺素和组胺)转运到突触小

泡中储存,GUO 等[103]在 SH-SY5Y 细胞过表达 α-
突触核蛋白后表现出 VMAT2 活性被抑制,导致

胞质内多巴胺水平升高和 ROS 水平升高。 过表

达的 α-突触核蛋白造成囊泡运输障碍和 VMAT2
功能障碍,使得新合成的多巴胺不能及时存储在

单胺能囊泡中,多巴胺能够自发氧化生成有毒的

多巴胺醌类物质,并伴随产生超氧化基和过氧化

氢。 此外,多巴胺氧化还会导致葡萄糖脑苷脂酶

(glucocerebrosidase,GCase) 活性降低、线粒体和

溶酶体功能障碍[104] 。 而多巴胺通常只在黑质和

纹状体的多巴胺能神经元中合成,胞质中多巴胺

自发氧化介导的神经元损伤可能是 PD 患者多巴

胺能神经元特异性损伤的原因之一。 另外,在

MN9D
 

细胞中过表达 α-突触核蛋白会抑制酪氨

酸羟化酶 ( tyrosine
 

hydroxylase, TH) 在 Ser19 和

Ser40 位点的磷酸化,导致 TH 的活性下降和多巴

胺合成减少,而 Ser129 位点磷酸化的 α-突触核蛋

白抑制 TH 活性的能力下降甚至增强了 TH 活

性[105-106] 。 病理性的 α-突触核蛋白通常都是发生

Ser129 位点磷酸化,这可能增强了胞质中多巴胺

自发氧化造成的损伤。

5　 α-突触核蛋白在神经元间的传播

α-突触核蛋白异常聚集形成路易小体是 PD
的病理学标志,在 PD 患者的尸检报告中发现

α-突触核蛋白聚集体可能发生了传播。 BRAAK
等[107] 通过 PD 患者尸检发现路易病理变化最先

出现在舌咽神经和迷走神经的背侧运动核以及

前嗅核这些外周神经中,再从脑干到端脑和大脑

皮层逐步扩散。 KORDOWER 等[108] 在移植到 PD

患者纹状体 14 年后的黑质神经元中发现路易小

体样包涵体。 LI 等[109]通过免疫组织化学和电子

显微镜分析 PD 患者在移植人胎儿中脑神经元 12
  

~
  

16 年后,移植神经元中路易小体的形成与演

变,表明路易小体在移植的神经元中以类似于宿

主黑质神经元的方式逐渐发展。 另外,在 PD 患

者的脑脊液中可以检测到 α-突触核蛋白聚集

体[110] ,这些体内研究证据都指向 α-突触核蛋白

极有可能存在细胞间转移机制。
α-突触核蛋白在神经元间的传播在细胞和动

物模型中也同样得到证实,VOLPICELLI-DALEY
等[111]将 α-突触核蛋白合成的 PFFs 添加到原代

海马神经元培养物中,PFFs 可以进入细胞并募集

内源性 α-突触核蛋白形成路易小体或路易神经

突样聚集体。 KARPOWICZ 等[112] 发现体外培养

的原代神经元摄取 PFFs 后大部分都会经过溶酶

体加工,当溶酶体膜完整性受损将会加速 α-突触

核蛋白聚集体形成和传递的过程[113] ,而溶酶体

膜的完整性及功能与年龄呈负相关,这可能是导

致 PD 发病老年化的因素之一。 LUK 等[114-115] 在

年轻无症状的 SNCA 转基因小鼠和野生型小鼠脑

内注射病理性的 α-突触核蛋白,均加速了大脑路

易小体样包涵体的形成和引发快速进展的神经

退行性变性,病理性 α-突触核蛋白沿主要中枢神

经系统通路传播到远远超出注射部位的区域,但
是在 SNCA 基因敲除小鼠中注射病理性的 α-突触

核蛋白没有表现出任何 α-突触核蛋白包涵体,这
表明 α-突触核蛋白聚集体在神经元间转移可能

是由外源性的病理性的 α-突触核蛋白诱导内源

性 α-突触核蛋白聚集实现的。
α-突触核蛋白从神经元扩散到神经元的机制

尚未完全了解清楚,目前的研究证据表明 α-突触

核蛋白可以通过胞吞胞吐、外泌体和隧道纳米管

完成扩散。 EMMANOUILIDOU 等[116] 发现体外培

养的 SH-SY5Y 细胞以钙依赖性机制由外化囊泡

分泌 α-突触核蛋白。 有研究使用蛋白质片段互

补测定法,证明 α-突触核蛋白寡聚体存在于神经

元和非神经元细胞的外泌体组分中,与游离的

α-突触核蛋白寡聚体相比,外泌体组分中更容易

被受体细胞吸收,并且可以诱导更强的毒性[117] 。
外泌体加快了细胞对 α-突触核蛋白聚集体的摄

取,加速了生理性的 α-突触核蛋白向纤维聚集体
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的转化[118-119] 。 当 α-突触核蛋白降解障碍造成积

累也会增加 α-突触核蛋白的分泌,例如溶酶体发

生功能障碍时,会增加外泌体介导的 α-突触核蛋

白释放和传递[120] 。 另外,ZHAO 等[121] 发现体外

培养的 SH-SY5Y 细胞也可以 SNARE 蛋白依赖性

通过多个囊泡通路介导分泌 α-突触核蛋白。 显

性阴性突变动力蛋白-1( dominant-negative
 

mutant
 

dynamin-1,
 

DNM-1) K44A 突变体的表达可以显

著抑制网格蛋白介导的内吞作用,LEE 等[122] 发

现 α-突触核蛋白聚集体进入神经元可被低温或

DNM1
 

K44A 突变体抑制,证明 α-突触核蛋白聚

集体进入神经元可以由内吞作用介导。 FLAVIN
等[123]的研究也证明了内吞囊泡破裂是 α-突触核

蛋白侵袭细胞的一种保守机制。 此外, MAO
等[124] 发 现 淋 巴 细 胞 活 化 基 因 3 ( lymphocyte

 

activation
 

gene
 

3,LAG3)以高亲和力结合 α-突触

核蛋白原纤维,并引发细胞对 α-突触核蛋白原纤

维的内吞作用,而 LAG3 与 α-突触核蛋白单体结

合却非常低,敲除 LAG3 可以显着延迟病理性

α-突触核蛋白诱导的多巴胺能神经元丢失。 但

是,在敲除了 LAG3 的小鼠模型和神经元模型中

α-突触核蛋白的传播和病理效应不能完全阻断,
说明有多重机制介导 α-突触核蛋白的摄取。 朊

病毒蛋白( prion
 

protein,PrP)是一种锚定于细胞

膜表面的糖蛋白,主要存在于神经元中,具有两

种构象状态:一种是结构稳定、功能正常的细胞

型 PrPC;另一种是构象异常、富含 β 折叠片的致

病型 PrP Sc。 AULI ′C 等[125]发现 PrP 敲除小鼠神经

元摄取 α-突触核蛋白原纤维的能力发生下降。
另外,ABOUNIT 等[126] 使用定量荧光显微镜观察

共培养的神经元,发现 α-突触核蛋白原纤维可以

通过溶酶体囊泡内的隧道纳米管有效地从供体

细胞转移到受体细胞,并且转移后的 α-突触核蛋

白原纤维能够在受体细胞的胞质溶胶中诱导内

源性 α-突触核蛋白形成聚集体。

6　 α-突触核蛋白在神经胶质细胞中

的传播

6. 1　 小胶质细胞

小胶质细胞是中枢神经系统中唯一的一种

常驻巨噬细胞[127] ,其表面受体 TLR2、TLR4 可以

与微环境中的 α-突触核蛋白相互作用而被激活

与富集,活化的小胶质细胞通过 TLR4 介导吞噬

α-突触核蛋白[128-129] 。 同时,小胶质细胞是各种

主要的脑细胞类型中对 α-突触核蛋白聚集体降

解能力最强的[130] 。 在病理状态下,α-突触核蛋

白等致病蛋白的持续刺激促使小胶质细胞转变

为促炎型,持续分泌炎症因子、ROS 和一氧化氮

(nitric
 

oxide,NO)等物质[131-132] ,导致 α-突触核蛋

白的吞噬和降解受到抑制,持续的神经炎症和氧

化应激反应造成神经元损伤将加剧 PD 的发病进

程[133] 。 有研究分别在 SNCAA53T 转基因小鼠和野

生型小鼠中用脂多糖( lipopolysaccharide,LPS)诱

导,最初均表现出难以区分的急性神经炎症,但
之后只有转基因小鼠发生了持续的小胶质细胞

增生、炎症因子分泌增加和黑质纹状体的多巴胺

能神经元进行性变性[134] ,这表明神经炎症加强

了突变型 α-突触核蛋白的毒性作用,突变型 α-突
触核蛋白也加强了神经炎症。 另外,中枢神经系

统的小胶质细胞可分泌大量的外泌体,尤其是在

炎症的刺激下可增加外泌体分泌[135-136] ,α-突触

核蛋白在小胶质细胞中过度积累后,会以外泌体

的形式分泌到微环境中,这些带有致病蛋白的外

泌体将会传递到其他脑区进入非病变神经元内,
诱导生理性的 α-突触核蛋白异常聚集[137-138] 。
6. 2　 星形胶质细胞

星形胶质细胞是中枢神经系统数量最多的

神经胶质细胞,通过多种途径起到支持和保护神

经元的作用,例如分泌神经营养因子和抗氧化

剂[139-140] 、清除 α-突触核蛋白[141] 、参与谷氨酸和

脂肪酸的代谢[142-143] 、介导线粒体向神经元的转

移[144] 以及参与血脑屏障形成[145] 等。 其自身表

达 α-突触核蛋白的水平非常低,可以被微环境中

的 α-突触核蛋白通过 TLR4 信号活化并产生炎症

反应[146] ,并以不依赖 TLR4 受体的内吞作用摄取

神经元分泌的 α-突触核蛋白[128,147] ,摄取的外源

性的 α-突触核蛋白主要存在于星形胶质细胞的

溶酶体区室内[148] ,并通过溶酶体途径降解外源

α-突触核蛋白[149] 。 另外,有研究发现蛋白酶体

抑制剂和自噬抑制剂可以消除星形胶质细胞对

α-突触核蛋白的清除,说明蛋白酶体和自噬途径

可能也参与了外源性 α-突触核蛋白的降解[150] 。
星形胶质细胞还可以通过直接接触或隧道纳米
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管将聚集的 α-突触核蛋白主动转移到附近的星

形胶质细胞[151] ,避免了 α-突触核蛋白在个别星

形胶质细胞内大量积累。 神经元和星形胶质细

胞之间的 α-突触核蛋白转移表明星形胶质细胞

在降解而不是扩散中发挥作用,星形胶质细胞能

够有效地降解原纤维形式的 α-突触核蛋白[148] ,
还可以通过分泌某些分子降解细胞外的 α-突触

核蛋白,例如:星形胶质细胞大量表达的二硫键

异构酶(protein
 

disulfide
 

isomerase,PDI)可以分泌

到细胞外分解 α-突触核蛋白原纤维和防止 α-突
触核蛋白纤维化[152] 。

PD 患者大脑微环境通常会长期浸润 α-突触

核蛋白,在长期且大量的病理性 α-突触核蛋白的

刺激下,由 NF-κB 信号通路传导的受体相互作用

蛋 白 激 酶 ( receptor-interacting
 

protein
 

kinase,
RIPK) 依赖性激活星形胶质细胞转化为促炎

型[153-154] 。 促炎型星形胶质细胞降解 α-突触核蛋

白的能力下降,当 α-突触核蛋白在星型胶质细胞

中过度积累可能通过内质网应激、氧化应激、线
粒体损伤等机制诱导细胞死亡[141] 。 有研究在星

形胶质细胞中过表达 α-突触核蛋白突变体(A53T
或 A30P ),导致内质网应激和部分高尔基体碎

裂,而在过表达 α-突触核蛋白的星形胶质细胞与

原代神经元共培养系统中,神经营养因子水平明

显下降、神经突的生长受到抑制[155] 。 在利用人

源诱导多能干细胞(induced
 

pluripotent
 

stem
 

cells,
iPSCs)分化成由神经元和星形胶质细胞组成的中

脑类器官中发现 α-突触核蛋白在星形胶质细胞

积累会促进神经元 TLR2 受体介导的神经退行性

变和 α-突触核蛋白聚集[156] 。 在利用重组腺相关

病毒(recombinant
 

adeno-associated
 

virus,rAAV)过
表达 α-突触核蛋白的恒河猴 PD 模型中观察到星

形胶质细胞活化为促炎型,在过表达的第 4 个月,
小胶质细胞和星形胶质细胞的数量分别增加了

4 倍和 2. 39 倍[157] 。 这些结果表明,在病理状态

下,星形胶质细胞也会产生神经损伤作用。

7　 α-突触核蛋白在肠脑轴传播

2003 年,BRAAK 等[107]发现了 α-突触核蛋白

可以在外周和中枢神经系统中传播和转移后,首
次提出 PD 可能是由于肠道中病理性 α-突触核蛋

白经迷走神经进入中枢神经系统引起的。 虽然

α-突触核蛋白在肠脑轴的传播机制和调控机制还

未清楚,但在动物模型上的研究结果证实了 α-突
触核蛋白可以沿着肠脑轴传播。 SVENSSON
等[158]调查发现接受躯干迷走神经切断术的患者

发生 PD 的风险降低,表明迷走神经可能参与 PD
的发病机制。 HOLMQVIST 等[159]把 PD 患者脑裂

解物中的 α-突触核蛋白和重组 α-突触核蛋白注

射到大鼠肠壁后,α-突触核蛋白通过迷走神经运

输并以时间依赖性方式到达脑干迷走神经的背

运动核。 KIM 等[160]将病理性的 α-突触核蛋白注

射到小鼠的十二指肠和胃的肌肉层后,最先在迷

走神经背侧运动核中观察到,之后在蓝斑、基底

外侧杏仁核、中缝背核和黑质致密部都观察到病

理性的 α-突触核蛋白,同时观察到小鼠出现多巴

胺能神经元丢失以及运动障碍、认知障碍和焦虑

等症状。 但在切断小鼠的迷走神经后,病理性的

α-突触核蛋白不能传输到小鼠的大脑。 如果是

SNCA 基因敲除小鼠,丧失合成 α-突触核蛋白的

能力,在十二指肠和胃的肌肉层注射病理性的 α-
突触核蛋白后也不能扩散到大脑。 这些证据表

明 α-突触核蛋白可以通过迷走神经从肠道传输

到大脑,并且传输过程中可能依赖于类似朊病毒

的方式扩散。 此外,YUAN 等[161] 发现 α-突触核

蛋白还在肾积累并传播到大脑,研究人员发现在

长期肾病患者和 PD 患者的肾中发现 α-突触核蛋

白沉积,通过诱导 PD 小鼠模型肾衰竭能够加速

脑内 α-突触核蛋白聚集。 为了明确肾的 α-突触

核蛋白能否传递到大脑,研究人员把 α-突触核蛋

白 PFFs 注射到小鼠肾,发现 α-突触核蛋白聚集

体沿神经通路传递到大脑,并诱发小鼠运动障

碍,而手术切断肾迷走神经组的小鼠被阻断这一

传播过程。 另外,研究发现肾静脉中 α-突触核蛋

白的浓度要低于肾动脉[161] ,α-突触核蛋白除了

在神经元还在红细胞中高表达,肾可能参与了血

液中 α-突触核蛋白的降解而导致 α-突触核蛋白

在肾积累。

8　 α-突触核蛋白过表达动物模型

α-突触核蛋白的异常聚集与沉积是 PD 发病

机制中的核心病理特征之一,被认为在疾病的发

生与进展中发挥关键作用。 为模拟其致病机制,
科研人员已在多种模式动物中构建 SNCA 基因过
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表达模型,从无脊椎动物到高等哺乳动物(包括

秀丽隐杆线虫、果蝇、啮齿类动物、猪和非人类灵

长类动物等) [162] 。 秀丽隐杆线虫和果蝇因其基

因操作简便、生命周期短和神经系统简单,适合

机制研究和新药的初步高通量筛选[163-164] 。 而啮

齿类动物的神经解剖结构与人类相对接近,具有

独特的黑质结构提供多巴胺来支持基于纹状体

的运动系统的功能,是临床前测试阶段的主要动

物模型[165-166] 。 此外,与非人类灵长类动物等大

型哺乳动物相比,啮齿类动物具有诸多经济和实

验优势,是目前应用最广泛的 PD 动物模型。
目前 SNCA 基因过表达动物模型的构建方法

主要有两种,一是通过基因编辑增加 SNCA 基因

拷贝数或者使用强启动子增强表达,另一种则是

通过脑立体定位仪直接在黑质或者纹状体中注

射携带 SNCA 基因的重组病毒载体。 2000 年,
MASLIAH 等[167] 首次构建了过表达野生型人源

α-突触核蛋白的转基因小鼠,并观察到神经元中

形成了 α-突触核蛋白与泛素免疫反应性包涵体

和基底神经节中发生多巴胺能末端丢失。 之后,
GIASSON 等[168] 分别生成了过表达野生型和

A53T 突变型 α-突触核蛋白的转基因小鼠,过表

达 A53T 突变型的小鼠出现严重而复杂的运动障

碍,严重时甚至导致瘫痪和死亡,并伴随年龄依

赖性 α-突触核蛋白包涵体。 这种早期的 SNCA 基

因过表达小鼠模型通常是在小鼠基因组中插入

野生型或突变型 SNCA 基因并使用人工启动子介

导广谱表达[169] 。 该类模型能够重现 PD 的多种

特征,包括严重的 α-突触核蛋白脑病理、多巴胺

稳态改变和运动障碍[170-171] ,是最早在体内证明

了 α-突触核蛋白毒性作用的动物模型之一。 但

是强启动子介导的表达水平远超生理剂量,可能

会引发非特异性细胞毒性,而且大多胚胎时期即

开始表达,影响神经发育,掩盖成年病程自然进

展。 尽管存在一定的局限性,但该类模型已被证

明是研究 α-突触核蛋白毒性机制和免疫疗法药

物筛选的宝贵工具[172-173] , 例如: ROSHANBIN
等[174] 使 用 一 种 修 饰 的 双 特 异 性 抗 体

(RmAbSynO2-scFv8D3)治疗 Thy-1 启动子下过表

达野生型 α-突触核蛋白的转基因小鼠,该抗体同

时靶向聚集的 α-突触核蛋白和转铁蛋白受体以

促进 α-突触核蛋白的降解。

OKUDA 等[175]在 SNCA 基因敲除小鼠的背景

下利 用 细 菌 人 工 染 色 体 ( bacterial
 

artificial
 

chromosome,BAC)作为载体将人源 SNCAA30T 基因

(包含 SNCA 基因启动子及其调控区域的大型

DNA 片段)插入小鼠基因组中,BAC-SNCAA30T 小

鼠模型显示出背侧纹状体的多巴胺释放缺陷,但
无 α-突触核蛋白沉积,也缺乏神经元丢失与明显

运动障碍。 该策略保留了人源 SNCA 基因调控机

制,使其在不同脑区的表达比例合理且更接近生

理状态,可用于研究 PD 的前驱症状及早期神经

病理变化,例如:快速眼动睡眠行为障碍( rapid
 

eye
 

movement
 

sleep
 

behavior
 

disorder,RBD)和嗅觉

减退[176] 。 但该策略的小鼠模型病程进展缓慢,
表型依赖 SNCA 基因的拷贝数,α-突触核蛋白聚

集水平相对较低,研究纤维化机制受限[175,177] 。
KIM 等[178] 通过 CRISPR 系统将 SNCA 基因

的磷酸化模拟突变(SNCAY39E 或 SNCAS129D ) 敲入

到小鼠内源位点,SNCAY39E 和 SNCAS129D
 

KI 小鼠均

表现出 α-突触核蛋白磷酸化增加、寡聚体形成增

强以及 α-突触核蛋白定位从膜结合转移到细胞

质,但未出现神经退行性病变和运动障碍。 该策

略使用鼠源的表达调控系统,α-突触核蛋白的表

达接近生理状态,但是天然调控下的表达水平

低,α-突触核蛋白病理表型显现缓慢且表型较轻。
相较于 BAC 或传统转基因技术中外源基因在基

因组中随机整合的方式,CRISPR / Cas9 系统能够

实现对特定位点的精准编辑,仅改变单个等位基

因,维持恒定的拷贝数,显著降低了对邻近基因

或调控元件的扰动风险[179] 。 另外,通过 Cre-loxP
系统可以实现 SNCA 基因只在特定脑区或特定神

经元中过表达,例如:DAHER 等[180] 培育的以 Cre
重组酶依赖性表达的条件性 α-突触核蛋白转基

因小鼠只在黑质多巴胺能神经元中表达 C 端截

短的 α-突触核蛋白。
重组腺相关病毒是多种体内基因疗法的载

体,WANG 等[181]使用 AAV9-SNCA53T 注射到小鼠

的单侧黑质中,小鼠在过表达 7 个月后表现出轻

度运动和嗅觉功能障碍,黑质和纹状体伴有内质

网应激反应,但未出现明显的神经退行性病变。
重组腺相关病毒或重组慢病毒介导的过表达可

以引起快速进展的 α-突触核蛋白包涵体形成,可
以通过选择不同的剂量、血清型和启动子来调控
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α-突触核蛋白的聚集程度和毒性[182-183] ,但是与

强启动子驱动的转基因小鼠类似,病毒载体驱动

的 α-突触核蛋白表达通常也远高于内源水平而

产生非特异性毒性,而且短时间大量表达会影响

蛋白的翻译后修饰[184] 。 另外,受限于手术操作

和病毒活力和扩散问题,造成过表达水平和分布

不均,往往模型间差异较大。
尽管大多数 SNCA 基因过表达小鼠模型在中

脑黑质或纹状体区域形成了 α-突触核蛋白聚集

体,但缺乏明显的黑质致密部多巴胺能神经元丢

失,许多模型仅出现轻微神经元减少,或仅表现

为轴突末梢退行、突触结构异常,而不是细胞体

的系统性退化[185-186] 。 即使是在 SNCA 转基因小

鼠基础上再注射 AAV-SNCA 介导过表达的联合

模型,其神经元只是轻微退化[187] 。 SNCA 过表达

小鼠模型无法重现 PD 的神经退行性特征,这可

能是因为 PD 本身就是由遗传、环境、老年化、免
疫和代谢等多种因素共同作用的结果[188-189] 。 由

基因突变引起的家族性 PD 大约占全部 PD 病例

的 15%, 而散发性 PD 患者中多数为不明病

因[190] 。 仅通过 SNCA 过表达无法复刻如线粒体

功能障碍、溶酶体清除缺陷、肠脑轴异常、炎症微

环境等致病机制,而这些恰恰可能是驱动神经元

退化的关键。 另外,小鼠内源性的 α-突触核蛋白

序列与人类存在关键氨基酸差异(例如,其第 53
位残基天然就是 Thr,而人类该位点原本是 Ala,
在 PD 中才发生 Ala→Thr 突变),也就是说小鼠

可能对突变型或过量表达的 α-突触核蛋白毒性

不敏感[191-192] 。 此外,受限于啮齿类动物的神经

解剖结构和寿命,小鼠的黑质区域仅含数千个多

巴胺能神经元,相较人类在数量和神经复杂度上

差异显著,因此即便有部分退化,也难达到行为

学表型阈值[193] 。 PD 是一种与年龄高度相关的

神经退行性疾病,其发病风险和进展速度与年龄

增长显著相关,潜伏期可长达 20 年,临床期通常

为十数年,但多数小鼠模型在研究中未超过 20 月

龄[194] 。 具有争议的是,路易小体虽然是 PD 标志

性病理之一,但其是否直接导致神经元死亡仍存

在争议。 有研究表明,路易小体可能是一种防御

性结构,而导致神经毒性的是游离寡聚体而非包

涵体,也就是说路易小体形成的过程,而不是简

单的 α-突触核蛋白纤维体,才是神经退行性病变

的主要驱动因素[73] 。 而 SNCA 基因过表达小鼠

模型可能就是未能模拟 PD 中 α-突触核蛋白聚集

的过程,虽然形成包涵体但不伴随神经元死亡,
说明了聚集和退化并不总是线性相关。

目前的研究表明,在小鼠模型上单纯的 α-突
触核蛋白及其突变体过表达的自主效应不足以

引发多巴胺能神经元退行性病变,结合其他致病

基因的联合模型可能是一个新的方向。 有研究

发现,与野生型小鼠相比在 LRRK2
 

G2019S 转基

因小鼠双侧纹状体注射 α-突触核蛋白 PFFs 加剧

了 α-突触核蛋白的聚集和多巴胺能神经元的退

化[195] 。 Gba 基因编码的 GCase 是一种溶酶体酶,
主要作用是水解葡萄糖脑苷脂,生成葡萄糖和神

经酰胺,在 SK-N-SH 细胞、大鼠原代皮质神经元

或大鼠纹状体中,GCase 功能丧失会通过抑制自

噬途 径 导 致
 

α-突 触 核 蛋 白 水 平 升 高[196] 。
SNCAA53 T 转基因小鼠与 Gba 半缺失的小鼠交配

获得的双突变模型表现出死亡更早、寿命更短和

症状进展更快, 表现出嗅觉和运动障碍[197] 。
PINK1 和 PRKN 基因突变失活与 PD 发病相关,
其编码的 PINK1 和 Parkin 蛋白介导线粒体自噬

通路,通过识别并选择性地用 65 位丝氨酸磷酸化

泛素( phosphorylated
 

ubiquitin
 

at
 

serine
 

65,pS65-
Ub)标记受损的线粒体,从而标记它们进行降解。
有研究表明,PINK1 和 Parkin 蛋白会影响彼此的

稳定性、溶解度和形成聚集体的趋势,并对路易

小体的形成具有重要意义[198] 。 在细胞内过表达

α-突触核蛋白会导致 Parkin 蛋白积累,人类大脑

尸检和 SNCA 转基因小鼠的研究结果显示 pS65-
Ub 水平与脑内的 α-突触核蛋白负担显著相

关[199] ,这表明 α-突触核蛋白和 PINK1-Parkin 通

路之间可能存在相互作用,共同影响 PD 进展。
但目前未见报道 PINK1、PRKN 与 SNCA 双基因或

三基因编辑小鼠模型。 除了已知的致病基因,还
可以结合衰老、环境毒素和炎症反应等致病因素

解决小鼠模型神经元退化不足的问题,例如:过
表达 α-突触核蛋白的小鼠在加速衰老的 SAMP8
背景下表现出特有的运动障碍、多巴胺水平降

低、多巴胺周转增加和突触终末丢失[200] 。
由于啮齿类动物和人类在寿命、神经解剖结

构和行为学等方面存在显著性差异,小鼠模型无

法模拟 PD 的一些特殊病理结构和复杂运动症
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状。 而大型哺乳动物和非人类灵长类动物的 α-
突触核蛋白过表达模型可能更具优势, ZHU
等[201]使用 CRISPR / Cas9 介导的基因编辑和体细

胞核转移( somatic
 

cell
 

nuclear
 

transfer,SCNT) 技

术生成了同时携带 3 个致病突变(E46K、H50Q 和

G51D)的 SNCA 转基因克隆猪,但在 3 月龄时未

检测到 α-突触核蛋白聚集和多巴胺能神经元退

化,还需长期观察。 有研究在成年狨猴的大脑中

分别注射 AAV-SNCA 和 α-突触核蛋白 PFFs 构建

PD 模型[202-203] 。 AAV-SNCA 狨猴模型的神经元

出现严重的神经元病变,包括 α-突触核蛋白包涵

体、颗粒沉积物、肿胀、营养不良以及萎缩等,在
转导后 16 周,出现 30%

  

~
  

60%的酪氨酸羟化酶

阳性神经元丢失,还出现了一种运动障碍,即头

部位置偏差。 α-突触核蛋白 PFFs 狨猴模型在注

射后仅 3 个月内就表现出 PD 样 α-突触核蛋白病

变,在 TH 阳性神经元中形成了强大的路易小体

样包涵体,并且在大脑的注射侧观察到 TH 阳性

神经元数量显着减少。 此外,YANG 等[204]将表达

SNCAA53T 基因的慢病毒载体注射到恒河猴的黑质

中表现出时间依赖性 PD 样神经病理学变化,还
导致了广泛的反应性星形胶质细胞和轴突变性,
但未见报道多巴胺能神经元退化。 NIU 等[205] 生

成的 SNCAA53T 转基因恒河猴模型出现早期的 PD
样非运动症状,包括认知缺陷和焦虑。

9　 治疗方案

目前,PD 的治疗主要以缓解症状和延缓疾

病进展为目标,在疾病早期,通常是服用左旋多

巴,或者与多巴胺受体激动剂或单胺氧化酶 B 抑

制剂联合服用[206-209] ,对于药物疗效减退或严重

运动并发症的患者,则可以通过安装脑起搏器使

用深部脑刺激术改善症状[210-211] 。 其作用机理主

要是补充多巴胺,或延缓多巴胺降解,或激动多

巴胺受体,但无法逆转神经元退化过程。 针对

α-突触核蛋白介导的神经元毒性,研究人员提出

了靶向 α-突触核蛋白的免疫疗法,例如:由罗氏

和 Prothena 公司合作开发的靶向 α-突触核蛋白

聚集体的单克隆抗体 PRX002,正在作为早期 PD
的潜在疾病缓解疗法进行研究,在大规模Ⅱ期临

床试验的数据表明 PRX002 对于快速进展 PD 患

者显示出对运动症状进展有一定减缓疗效,尤其

在接受单胺氧化酶 B 抑制剂的亚群中,PRX002
对抑制症状恶化的效果更为明显,但在早期 PD
患者中,PRX002 未能显著改善运动功能[212] ;由
AFFiRiS 公司开发的 PD01A 疫苗是一种基于肽

段的疫苗,通过主动免疫产生抗体靶向 α-突触核

蛋白聚集体,在Ⅰ期临床试验中显示出良好的安

全性和耐受性[213] , 在 Ⅱ 期临床试验中显示

PD01A 在多系统萎缩患者中的效果较为积极,显
示出延缓疾病进展的潜力,但在 PD 病患者中,临
床症状的改善尚未达到显著差异[214] 。 虽然针对

α-突触核蛋白的免疫疗法在临床试验上还没取得

令人满意的效果,但是为 α-突触核蛋白病的治疗

提供了一种可能的方案。 另外,有研究人员发现

小分子抑制剂或激动剂可以通过阻断 α-突触核

蛋白的聚集或促进其降解来发挥作用,例如:小
分子抑制剂 Anle138b 可以阻断 α-突触核蛋白寡

聚化[215] ,在防止多系统萎缩小鼠模型的运动衰

退和神经元变性有良好效果[216] ,目前,口服型生

物可利用的 Anle138b 在临床Ⅰ期试验中表现出

良好的安全性和药代动力学特征[217] 。 转录因子

EB( transcription
 

factor
 

EB,
 

TFEB)可以通过激活

自噬-溶 酶 体 途 径, 清 除 α-突 触 核 蛋 白 聚 集

物[218] ,在动物实验中显示,过表达 TFEB 可以防

止神经元变性[219]
 

。 此外,针对线粒体功能相关

基因突变导致的遗传性 PD, 小分子激活剂

Kinetin 可以通过增强 PINK1 活性,激活 PINK1 /
Parkin 通路,促进线粒体质量控制[220] 。 神经炎症

和神经胶质细胞对神经类疾病也有重要的调控

作用,利用 RNA 干扰降低神经炎症水平[221] 、靶
向炎性小体轴(如 NLRP3) 抑制小胶质细胞活

化[222]和通过移植星形胶质细胞减轻 α-突触核蛋

白病理提供神经营养作用[223-224] 等都被提出为潜

在的治疗方法。 PD 致病因素复杂,临床症状表

现出异质性[225] ,针对不同的致病因素开发不同

的治疗方法实现精准治疗可能更加有效[226] ,但
大多数 PD 患者都是未知病因的,可能需要逐步

靶向 α-突触核蛋白清除、线粒体修复、神经胶质

细胞和神经元细胞调控等的联合治疗方案。 另

外,上面提到的治疗方法往往需要合适的载体完

成脑部给药,外泌体作为天然纳米载体,能够通

过血脑屏障,可以携带小分子药物[227-228] 、基因治

疗分子[229] 或功能性蛋白质[230] 等高效进入细胞
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内,通过工程化修饰外泌体表面可以使其能够特

异性靶向神经元或胶质细胞[231-233] ,这些优势使

外泌体在神经系统疾病中具有巨大的潜在应用

价值。

10　 小结

α-突触核蛋白的异常聚集被广泛认为是 PD
及其他突触核蛋白病的关键病理标志之一,其在

结构、功能及聚集形态上的多样性决定了其在神

经系统中的多重毒性作用。 α-突触核蛋白主要是

在其聚集形成路易小体的过程中对神经元造成

功能障碍与死亡,即寡聚体和原纤维的形式具有

毒性作用,而最后形成包涵体是神经元的一种自

我保护行为。 当前研究发现,α-突触核蛋白通过

线粒体功能障碍、囊泡运输障碍、多巴胺代谢紊

乱、钙稳态失衡及神经炎症等多种机制协同介导

多巴胺能神经元的功能障碍与死亡,但其机制还

有待阐明。 同时,其聚集体具备细胞间传播能

力,可通过外泌体、内吞、隧道纳米管等机制在神

经元与胶质细胞之间扩散,形成类似朊病毒的病

理级联过程。 此外,α-突触核蛋白在肠道与肾等

外周器官中的聚集及其沿迷走神经传播至中枢

神经系统的研究,也进一步拓展了对其致病机制

的认识。
α-突触核蛋白致病机制的阐明,以及 PD 相

关治疗药物的研发和诊断标志物的探索,均依赖

于合适的 PD 动物模型以模拟疾病的关键病理特

征与进展过程。 目前已开发的 α-突触核蛋白过

表达动物模型涵盖转基因、BAC、病毒介导过表达

及基因编辑等多种策略,模式动物从无脊椎动物

到非人类灵长类动物。 这些模型在研究 α-突触

核蛋白功能、聚集过程、细胞毒性、跨细胞传播机

制及免疫治疗靶点验证等方面发挥了重要作用。
啮齿类动物因具备与人类相似的神经解剖结构、
操作技术成熟、成本较低等优势,是目前神经退

行性疾病研究和药物开发中最常用的临床前实

验动物,然而多数 α-突触核蛋白过表达小鼠模型

尚未能有效重现 PD 中多巴胺能神经元进行性丢

失和典型运动症状,其病理改变常局限于轴突变

性和突触末梢异常,限制了其在疾病进展研究及

临床表型再现中的应用。 其可能的原因是 PD 本

身就是受多种致病因素共同影响的疾病,另外,

小鼠与人类在 α-突触核蛋白关键氨基酸序列存

在差异,其对人源突变体的毒性响应亦存在物种

偏差。 为了弥补 α-突触核蛋白过表达小鼠模型

中多巴胺能神经元退化不显著的不足,近年来研

究逐渐采用多基因联合造模策略,以增强疾病模

型的病理表现和临床相关性,例如:将 SNCA 基因

过表达与 Gba、PINK1、LRRK2 等 PD 相关突变背

景相结合。 与此同时,结合炎症因子刺激、加速

衰老背景或环境毒素等多因素诱导,也有助于建

立更接近人类病因的联合模型。 此外,非人灵长

类动物正逐步成为研究趋势,尤其在评估非运动

症状、行为学变化及长期疾病进展过程模拟中展

现出更高的生理相关性。 当前阶段,α-突触核蛋

白过表达小鼠模型仍是研究其致病机制的重要

工具,但需结合现代基因编辑手段、病因整合策

略的优化设计,进一步提升其生理相关性与临床

转化价值。 未来 PD 模型研究应更加关注病理进

展的动态过程(如 α-突触核蛋白逐步形成路易小

体的过程)、个体间表型异质性以及多系统协同

异常的再现,为 PD 病因学研究与精准治疗策略

提供更加坚实的实验基础。
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