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[ Abstract])

The core pathological feature of Parkinson’ s disease (PD) is the abnormal aggregation of a-

synuclein and the result ing neuronal damage. o-Synuclein exhibits toxic effects when it forms oligomers or fibrils,

leading to neuronal death via multiple pathways, including mitochondrial dysfunction, impaired vesicular trafficking,

dopamine auto-oxidation, and neuroinflammation. In addition, a-synuclein can propagate between cells via exosomes,

endocytosis/exocytosis, tunneling nanotubes, or vagal nerve axonal transport, creating a cascade of pathological

effects. Animal models of PD that recapitulate the key pathological hallmark of a-synuclein accumulation are

indispensable tools for elucidating disease mechanisms and developing novel therapeutic interventions. To date,

various strategies, including transgenic techniques, bacterial artificial chromosome ( BAC)-mediated expression, viral

vector-mediated overexpression, and gene editing, have been employed to develop a-synuclein overexpression animal

models. These models have significantly advanced our exploration of the relationship between PD and a-synuclein.

This systematic review considers the structure and function of a-synuclein, its mechanisms of toxicity, intercellular

propagation pathways, animal models of overexpression, and potential therapeutic targets based on its pathogenic

mechanisms.
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A F NP FH B 22 8 (lipopolysaccharide , LPS) i
T, B W YRR HE DL DX A3 1 SR R 8 SR E , (B
ZIa BRI /N A T 22 10 /N e J5T 248 g
R SRAE PR3 W 1S TN SR BT SOIR AR 1Y) 22 T i
REANZR IO IR AT PR AR PR 3 6 HA b 26 4 R Ty
TSR oS il AR I FEMEAE AT, AR 058
fil Az 2 LN aR T R EE RAE, D38, PR e R
G510 /IN S T A0 L T 4 K B B AN G R TE
SORE BT T 3G 0 A I A A 1 -5
WA ATE/ M B 40 B b i FE AR RS, 2 DASM B A
AIE W B A BE b, 3 S8 A B0 8 H 1Y 4
WA 2 A 3efs 300 HCAth i DXk A AR R B B2 TN
VAR a8 AR A S AT
6.2 BRI

FIE I 5T 20 2 i X d 2 R G R i 2 1Y
P22 I T 240 A, 3 2ok 22 3 A S 30 SR AR AP
ST AR, 1900 o3 s i 2278 3% X R b A Ak
R R a- R AR Y S 5 AR ERM
g WRR I IH21 A  ZoRi Ak 1) 4 28 0 1
B RS 5B Y S, A B
ik o- S il A% A KPR, AT DI ROA S
1 o-Z il A% A P TLR4 {550 b7 A R
JCRET T FE DRI TLR4 244 i P 754 FH B
T/ UMY -2 il 2 11T B EUAY A R
PERY o- S il A% 28 1 3 EEAFTE T A8 s o 40 it 1)
VTR DX 25 9 U 3 ol i e AR 3 A B A AR
o-ZE A% AR Y S A, A T & R A A
IR0 A 3 w50 AT A BR B TR I J5T 4t i Xt
-5 il 2 TR R, 10D 2 1 BEAC RN 13 W i AR
AREt 5 TAMNEM: o-28 il i & A R R,
TP J6E IO 240 3 AT LA 36 sk e A M o 4 oK
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EHREN o2 il A% 1 32 S 7% BB iy 2
TR RAMME ™ R T -5 il A% 2B AR A 2
BT A0 N R R R B2 TN I I o 4
JL2Z TB] Y -5 M A% 2 11 7 B 3 I R R IR Jo 4 i
TERERR A Y 8P AR BRI o 4 e g
BT S5 b o i i 2T 2 T 200 -2 A B
3 T LAGH 3k 4 0 i 6 G 8 it 2 B AP Y -5 i
R HE 1, 00 . B R i J0T 240 A o 3Rk 1Y) A
ST ( protein disulfide isomerase , PDI) AJ LLJ3 4
AT -5 il A% AR 1 I 2T 4EFNBT 1E -5
fil Az B AR AL

PD B R A 2 KR o2 fih
B TR R HLCR A9 BRI o5 Al A% 25 11 1Y
FIBECT , i NF-kB {5530 B A% S 19 52 A4 RH B A T
5 1 #4 B ( receptor-interacting protein kinase,
RIPK ) 448 14 80 15 B2 0 M Joi 4 0 1k O e R
LIS g R T T AN R A -2 fl % 2
HRE S TR, 24 o5 il 25 11 1 B2 R e Joie 4
Hh et B2 AR R AT BB A P JB R R E SRA ER 2
KLYV N7 1 i D7 A RN SR S s
T T 240 A isk 3638 -5 il A% 2 1 98 A8 K (AS3T
B A30P ), 250 S5 o 7 RN R 43 v 2K R AR T
B AR IR -5 il A% A E By BB B B 40 i 5
JEARh 2T TR R G b, Bl 2B SR 1K F B
BFRE MR A K Z B E T FER A
i 2 HE T4 MY (induced pluripotent stem cells
iPSCs) 43k B i i 28 50 LR TR IS o 240 R A B 17 v
IS a B A B o5 il A% AR TR B I 5 4 i
LRSS ML T TLR2 Z R S 2B 17k
AR oS A% AR IR AR TR 4 IR A O
J% B ( recombinant adeno-associated virus,rAAV) i
Fik o-ZEMAZ R I TEIRTRE PD AL gL £ &
T B A0 A e R B A i B2 4 A
/NG TS 240 L R T S5 A4 L ) 5k A ) 3 T
4 50 2. 39 fi5 7 ks gk BLIE I 7R BUR S
T, BIC R B A 257 AR s 2 A o

7 o-RARZE BT R &

2003 4, BRAAK 25" R BT a-Zfili% 4
AT AEANE AR ph S R PR G, A
WHEH PD ATRESZ T A8 TP B -2 il 8
M EM L AT ARG SRR, BIR

-5 % 2K A A g T el ) A2 38 LS AR LR 8
R BAES B | O BFIE 45 RAESE T -5
fil k% & (1 AT LAY B B I il A% 7. SVENSSON
USRI e B2 KT 2k 2 DA Y R
KA PD RS A, Rk E M2 §E2 5 PD
(& AL, HOLMQVIST 45 /48 PD 4 i %
DI Y -2 il A B I AR 2 o2 i A% 2R 1 T
PEVK BRI RE T | o- 5 il A% 2R 3 1 24 8 fh 22
Sy I LA ) AR 1 T =2 380 3k i 1 2K P 2 Y
EEA% ., KIM 25O B 1 o- 28 fil i 2 1 7
SHEVNRB T8RS LR 2 )G, e ek
A 21532 Sh A% Th LR B, 22 ) 7E W5 BT L 3RS
AMIATA A% | Fp 4 75 2% R 2 Jo S50 30 T L2 51
PRVERY o- il 2 1 R AU A 2 /N B B 2 B
iR 20Tk L) iz B s D0 A R 4 R
SEREAR . AEAE LI /N B 2k S p 22 ) o B 1)
- S filA% B AN R AL S 20 /N R K, 2R
SNCA FH BRIV, T2 28 A B o-28 il 25 1 1Y
e, e+ A A A LR JZ S B ) o
ZMAZ B G AN RE Y B KM, X B IE R %
BH -2 i A% 2 11 1T LA 2 3k 5B f 28 A 3 15
B, 3 FLAE i = A b m] BB AT 2R e 75
(7 B, BEAh, YUAN 2800 % 3l o2 fih 1%
T IR TE B R R AL B K, B98N 51 % BRAE
KB L PD R I B R e B -2 A% 2R
FIUURL, 5% S PD /I BUSE Y B 58 38 fiE 08 o 5ok
P o- 2 il B R A, b T I A -5 i
B RE AL BRI, BFSE N AT o2 il 2
1 PFFs 7ESF S/, BB -2 fil % 25 11 SR 46
VR 238 3 1 38 2 K, I35 & /N R 2 3h e
T, 10 T AT 15 2k 7 et 2 4 14 70 B o BEL T i —
fEREITRE . S A0 WF 5T R B0 K -5 A 2
PR R B T sk, a- 2 R SR bR T
FEMZ GRS AN P i 2k BT RES 5 T i
Wb -2 Ml 2 P A0 iRt T B - i A% 2
R,
8 a-RMZERITRIENMEE
a-ZfMAZ AR I S BE S UUEUE PD AR
B AP A% O BRARRAE 22 — | A 70 (1 %
A Gtk B R SR . B O L
BHIF B2 e 2R s il 2 SVCA FE R i
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FIRBR N TCHEMES P 2 = S5 3L sh i (s
75 0N PR FT 2 e SR mh o 258 g R AR R
KR a5) 1 75 0 R T 2R R R b PR H 3
R e A E M E M e 2 e W n, &S
HLHIIE 5T T 25 (400 A e 3 e i e 110 T iy
Vi ZRBh Pt 2 M S 25 4 5 N AR, B
TR ) R B 235 4 Bt 22 L IOk ST R I T BRI
MBS RGP RE , 2 s R Fr i o B i) 3 22 3
YAl o gpah 4R AR R KK S E K
I ZLBN AR LL , W 15 25 3 ) H AT 1 2 2 T f St
L, & H TR & 72 19 PD shigsisl,

H T SNCA 3 R ask 2235 3l 18 1 1y 4 T vk
TG PR, — & 30 1 5 R 4 A 3 i SveA LA
P DUR el B F o s s Pl s 3k, 55— A2
308 3 i 7 AR A 57 S L A R O A SOIR AR
SHHET SNCA FE PR i 40 B 3k AR 2000 4F,
MASLIAH 2517 9 YAl 1 3 26 35 97 28 AR
- S fAZ AR A 6 RN ERL, IR B 4 22T
e T o-28 il A% 25 15 72 28 e 28 B o 1 40 Tk 1k
MR A 2B RmER, 25,
GIASSON %518 43 5l A= A T 5 26 35 B AE AU
AS53T 587 RY -2 il A% 2 5% BE R /N B, 2ok 6
K AS3T 2878 B () /N B HE B0 ™ 1 AR 2% 1 32 B
T, ™ H B 2R SO RN SE T, I A Bl AR 8 K
P o- SR Al R LR, X AP SVCA B
PRI Ao 6 508 /0 B 7R 3 7 2 7 /D B R A P Al A
HP 2 RIRE S A8 Y SNCA FEH I TR sh 747
SRR I AIGES EBL PD 1 £ Fh
SFAE, AL HE I H Y o2 A AR 1 R | 2 L R
RS AR Faz gl e di 70| R A R R P IE
T o-RfixE A BEHEHN YRR Z —, |
FEURJE BT T B 3k K OF 2 8 A B &, 1T AR
2| R AR SR A0 M BE 1, i HL K 2 R AR B 5T R
TR FRIE, M2 KT 55 AR R H 2R
&, REAAAE— 1 e BR A (H i A A B B iE
WEMFFY -5 fill A% 2 11 35 ML R S e 7 i 24
Yo vk 1 & Bt T B 4. ROSHANBIN
LA — BB MRS X AR S M B K
( RmAbSyn02-scFv8D3) {7 Thy-1 JA 8l 7 T i %
IRMF A Y o5 il B 1 A SR R/ IN R i b4 [R]
AR ) SRR Y -5 Ml A% B 1 R B 1 A2 AR L)
PR o5 fil A 85 1 (R i

OKUDA %"V SNCA FE R R/ )N BRUAY 3 55t
TH A 4 AN T4 {4 {K ( bacterial artificial
chromosome , BAC ) 1E R 2 A% AR SNCA™" FE A
(B1 7 SNCA 3R )i 31 Ko Ho 8 7 X 38 %) K Y
DNA Bt 46 AN BRIE R 41 79, BAC-SNCA™ /)N
SRR 7R S 7S 1 5 0 SOPR AR 1) 22 B4 R R st s, (H
T a-Z % E AU, i = 20 8 5
B s, ORI PE R T AR SNCA JEH JEFEHL
il (0 AR AN [ i [X ) 3 3 Ho 3] 45 B O 422 30 A
PRZS, AT FF5E PD AT SRKAE R Sz B3 wh 2t
o5 FRAE Ak, 51 . PR R B B R AT R 5 A ( rapid

eye movement sleep behavior disorder, RBD ) A5

PR T HZE R W R /N R TR R U TR R
RV SNCA FEP A48 DB, -2 fil i B 1 3R
FETK AR AR BF 5T 2T AL BL RS2 PR 7177

KIM 20758 51+ CRISPR & Gi¥ SNCA H£
TR AL B 40) 8 28 ( SNCA™™" 5E SNCA™™” ) B A
FI /NN TR 5, SNCAY" F1 SNCA®™" K1 /NFL )
T - Ml A% B W IR AL I | 52 R AR Bl 3G
5 DA oS i A B 1 A7 A5 5 T 75 B A i
S (A H B A 2 38 A7 0 AR i B BRI R
WA B ) R B TR R R, a- Rl A R
IR AR R A (H& RAR A T 1) R B K P
15, -2 fil A% 25 11 B8 100 I PR 18 H T A%
FHEL T BAC SA% 58 6 5L PR B AR v A PR 7 2
R4 P BEHLEE A 10 5 20, CRISPR/ Cas9 R 4t A%
S BRGTAE AEAN A FRH TRE S i (SR A BN S
AR REE 2 A0 HE DL, SRR T AT 3 A
RO s XS ™ 46, i@ id Cre-loxP
ZRGEAT IS SNCA FE DR 70455 7 i X 4 5 Aol
ZeoorPd ik, BN . DAHER "™ 85 F LA Cre
o AR P 26 38 1 25 1 M -2 Ml B B 1 O
PRI BT BB T 22 B B RE A 22T P 638 C o iR
JE a- iz E A,

L BRAH OG0 B 2 2 Fh A N 3 DR L 1 2
&, WANG 2 i F AAVO-SNCA™" 15+ 2 /)8 il
AR T N 3R I8 7 N H Je R 2
JE 32 B RIS GE D) R A, 2B SR SCIR AR B A P T
I 17 985S 1, LA HE B B ) 2 AR AT MR AR
FEAMRAH S B E AR AN T k]
DL R PR R 1Y) -5 fis A2 3 (AL IR AT 1, AT
DAIE 3 B AN () A 7)o I3 AR RS 3l ok A 4
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o-ZEfMAZ R R AR Y B S
S8 Sl T IR Sl 1 A S R /N BRI, 9 2 28 1A 0K B
f) - i 2 11 3% 138 Bt 3 v T PN TR KT 1
FEAE AR SRR T L A ] R R R A5 )
FEHMBIREBIE ™ 54h, ZIRTFFAREME
I BT 7 AN R i Bt 3k K A3 A
AN AR ] 25 AR

RUE R L8 SNCA FEDR i 32 35/ BB R A5 rh
0 2B S B SOIRAAR X B T -2 Ml A% 2 1 SR A
A (= BA 5 0 SRS SO S 2 I RE M 2T &
0 V2 BEARN B R S 2o /b, SR B
R R AR RAT | 8 Mk 25 KA S B TR 2 A0 A A4
(R G PER AL B JEAE SNCA e R /N
R b PR ST AAV-SNCA A St 38 0B A
PR, Hopfi ot LR R GRS, SNCA i3 &3k
/NI TC L E B PD A 2R AT HERRIE , X AT
RBS2 o PD A B 302 st % R BE &AMk e
FE AR A 2 Fp R R L R MR A 45 L5
FER 2755 A EPE PD K2y 5 236 PD Sk 1]
B 15% , 1 B & P PD 3 b 280 N W R
P AT SNCA 3 3235 J6 1 4 20 I kA
TIIREREAS VA AT B e s | o i il 5 L RE ol
IR B ML , 73K 2L 4515 1T BE A2 DK 3l #2800
RIER S, 3o, NN TR PE ) o- 28 il 26
FPHI-5 NZRAFAE SR S B 1R 22 5 (il an, HLAf 53
TR IR IR S Thr, 1 A% 5 A Ala,
1€ PD A K Ala—Thr 22748 ) |t 5k & Ui/ B
AT REXT AR Y o) i R IR Y o2 il A% 2R 1 BRI
B A, A7 BR T G 1A 28 B ) o 2
iR 2 R A A, /0 BRSBTS A & BT~ &
ELRERE 2T, M3 N A B A 22 5 2 |
ZE 50 3 PR RIAE A 35 4 1R Ak, e s 24T
SERABEN PD R —Fh SRR AR OE Y
PRZARAT YRS , H o5 XURG: Rt i ol i 5 41 i
R R G VAR I AT K 3k 20 4R Iif PR U9
JHEAE (B 280 RS R 58 o AR 20 H
W BRI S MR BRI PD bRk
PR — (A HJE R H 4 S B Lot 17
FEG, AR, B S /M R —Fh B £
PEGEF 7 B0 20 B M A 2 U0 2 SE R AR AE A
TR, 2 1 % 5 /NMARTE A b 2 T AS S T
U oS Ml R AR GE AR, A R 2R A TR AR

IR F PR E P i SNCA ik ik /N R
BRI AT BE LR AR BERLALL PD h o- 28 A% R 1 R 4
HOPUN O/ AL R RN N (B N R TR 22 o0 o
VLA T R ANRIE I A B LR PERRE

H TR SE R B, 76 /N BURBE AL I Bl i) o-58
fib A B 1 B HL g AR At Rk iy B RN AN JE DA
51 % Z R REM 4 TCIRAT MR AR | 25 A HAh 20w
FER IR A BRI BE R — B I, A BESR
K, 5 A RN U FEE LRRK2 G2019S 5 5
PR /IS BROSUIM SR A 5 -5 fili A% 26 (1 PFFs i gl
T - Sl R R AR TN £ T BE A 2 0T R
) Gha FEH GG GCase S2=—Fhigs B4 il |
F2 AR FH 2 7K A 2 B M T B 2 S 2 A e
2N , 78 SK-N-SH 40 g | R FRURAR B2 B df 460c
R BRBCIR AR | GCase D RE 32 2k 2358 i 4 il B
Wk 2 T B o2 il B A K F T S
SNCA™ " LK /NEL S Gba 2 Bl 19 /)N B3 L
FRAFI RS AR 2 BP0 T 5 L 5y 5 J A
iR e TP, 3 B DR RSB B B AR
PINK1 Fl PRKN J:H R PD EHAH G,
H RS PINK1 1 Parkin & [/ S 20014 B 1
T R B 65 137 22 Z BRI IR AL
1Z % ( phosphorylated ubiquitin at serine 65, pS65-
Ub) i B2 10 I ZRiA , I FR 10 TR AT R i
HWF5EFH]  PINK1 F1 Parkin 25 143 520 1% I Y
o MV 1 B FIE i R AR AR ke 3, I Xt % o)
IMERITE BLEAT T Y ARG N it
o-ZE % AR (142 S 3 Parkin & 2, A KKK
JPREH SNCA e LR/ IN BRI BIF 58 25 R 7R pS65-
Ub 7K 5 il N 1 o= 58 il 4% 2 1 6740t 2 A
T X R -5 fil 4% 2 11 T PINK1-Parkin 38
P& 0] AT REAEZEAH BLAE L, 2Rl 2 PD i
{H BHTAR WA PINK1 PRKN 5 SNCA AU H %
SRR RN BT BR T ORI EOR SR i
A DASE G4 PRI 35 3 RN R E J g 45 250 [H £
fiff e /) R 80 4ok 22 TR A R AL A ) L, 491 4 3t
FIk - ZEMAZ B 10 /DN BRUAE N 35 2 119 SAMPS
BHF R IR A2 sh A £ 0K R
1% 22 P e JE e B fin RN 2 fish 8K 4227

1 TG U5 S sl ) A 2R 7E 75 1 22 Mgt i) 245
PR T A 2R 55 5 A B 35 e 22 57, /N R AL G
B PD 1 — SRR IR B 25 4 RN & 4248 S e
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R, MRBEA P FAE AR R K YN o-
28 fil A% R A o 2 Ok A A AT RE O HL 4 #, ZHU
A0 i B CRISPR/ Cas9 415 1 5 PR 4 68 1144 20
A% 5% #% ( somatic cell nuclear transfer, SCNT) £
AR T R 3 AE0wW %48 (E46K (H50Q F
G51D) 1) SNCA e 5L s B (R AE 3 i iR
i 2 -5 i A% £ 2R 4 RN 22 B B BB il 48 0T R
1k, BT RIS, A A 58 7 AR S A K i v
I3 BITES AAV-SNCA Fl a- % filli% & 11 PFFs k£t
PD A U025 AAV-SNCA 55 M 455 78 1 #2850
H B PR 2R TR AR, A o S M R TR
T JURLTCRR A K B RN R DA R SR A T
BS)E 16 J5, I 30% ~ 60% [ s R S AL il
B #2804 38 B T — Filis 3l A, B sk
T B ZE . o2 A% B 1 PFFs JROBAR 70 A 1
SHEAL 3 A H NSRRI PD FE o-28 Ml 5 (1%
S FE TH BAPE #2870 HPO% 1 T 58 K1 8 ) /MR
FEALIAIAR , I FL7E M 9 78 S OO0 22 3] TH FH
P2 TCRUR B WD AN, YANG 257" % 365k
SNCA™" BE R 110 9 7 3 AR T S50 81 T 4% 11 DI ol
rhr 2 I S JR] AR PR PD AR 205 B 25 AR k| iR
SECT Tz B B M R I R 4N A R g o AR
B R WARGE £ B RE M 22 o0iB 1k, NIU 2570 4=
LR SNCAMT ek 35 PR Y] A AR 70 1 BRI % PD
FEARIZ BIEAR , AL HE DA B AR
9 BITAR

HET,PD (3R Y7 3 B LLGE fiff R R A AiE 28 ¢
o it R R H AR, AR Al R IR A e
UL, 5 5 2 U 32 AR P sl ) sl B i S AL il B 4
TIFNBA R P00 St T 25 7 300 aE ol ™ 5
1B B RORE R ER DU RT L gt 2 i e 4
L RO b 7 Nl = 1 N R (YA E | B
BRI, U 5% 2 O R, S sh £
EU R 37 1A, (R T vk 3 e ph 2 e aR fb i B, EEXT
a-RAZE AN S B 2 oe N, BFIE N L
TR o- 2 flAZ B R RS T L, BN . (B IR
1 Prothena 28 B & 1E I & L 1) o-28 fil 4% 26 1
AR B BT FEHLR PRX002, 1E7E/E M L4 PD
VR TE SRR LR AR IR R A TR T, 76 OB T 30 i
PRI R 26 B PRX002 % T-Pe i iF & PD i
H N S e R R — e R AL, L

FEHESZ B R S AL B 41 6 550 9 S A, PRX002
X410 a1 i SRR Ak ) 5 TR Sl B e (HAE L PD
BE T PRX002 & A B & e atis sh o g™ i
AFFiRiS A JF & B PDOLA ¥ 1 J& — b 5 T ik
B, 8 3 S A B ) -5 Ml A%
BEAREM TE T WHm R Bos th BRI &
Sk AR A2 v, AR I R R 56 b BoR
PDO1A 7E £ R G E 47 B E THIRCRE B, 12
7 T I G R Vs T {RAE PD A R I
PRAER A TICRE 4 AR A 3 i 22 2 R ET X}
-G il A% AR A SR Y 7 TR A I R0 T 3 T A
A NI IRCR  HJE N -2 il 25 R BIR YT
PRt T P ATRER T R, DS, AR R
NG FA R 50 B 3 sh 700 AT DA S BELT -5 kA%
A SR AR B AR LR ik AR 4
I3 F IR Anle138b AT LABH KT -2 fil 2 25 1 5
AL FEBT IR 2 RG2S A/ R R 9528 3
R AR A A RO, B, H IR A
Yol FI Y Anle138b 7EIG IR T B350 90
KA AP R 25 AR 3h F1 2R R e T
EB ( transcription factor EB, TFEB) 7 L) i #8i%
H -1 AR R AR, T B o2 i % R R AR
Py eSS BoR i 3k TFEB 1] LA
WERRZTTAR PR AN, AT X ZR R T E AR O
R 5 A T 8O R AL TE PD, NSy IS 5
Kinetin 7] DL 35 34 98 PINK1 %5 M, #1% PINK1/
Parkin i [ , fE SELOR AT P il 20 ph 2 R E
TR 28 8 S50 40 L %o ot 2 24 9 g tho A 8 ) 0 4
YEFR R RNA Pt A 1 28 4 8 ZKSF2
] 28 P /Al (4n NLRP3) 410 80 /1 B8 3t 40 Bt 1%
b2 i R M IR I T A B -2 i 2
I ERER b 28 FR A 222 SRR B oM
FEMRYT ik, PD BUR N R & 4%, Ih R R &
BN 3518 S 0 I N B S E € i e b s -7 N i
FR3EYTT 7 1% S BURS MR T 1T RE S Jin A 20, (|
KK PD HBAE H & AR H K, 7] BE 75 218
A -5 Ml A% R T R EORLAR B S 2
2 LR 2 U A ML R AR S B B IRIT R T
A, AR ERIE T s A TR A 1 M A Y
IR 25 2, SN IR SR R SR G OK A4, BE 1% 3l
i i AR e, AT AREE N T2 Y SRR
P02 e 5 1 i 3 = = D R =10 G a1 )
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P o TR A i A1 00 1A 2 T mT L B A8
S i o 22 T MRS S Tk R A
SMNIBRAE R 22 R GE PR h B B R ¥ A6 10
e

10 /h&

a- % H Y W R Z A PD
T AT A% 2 19 1) S B BB 75 2 — , A
L5H IIRE RIS LRy SRR TE T HAE M
ZAKPTNZHEMEEN, oK ER T2
TEHIRAEIE LIt T /N S B 3o T rp 0 4 28 T 368 i
DIRERERT 50T, RIS SRR AN 2F 4E 9 S0 R A
TEPEVRIT, M 5 1 A A IR A i 220 i — Fif
AT R HETITTE & B, o5 il A% 25 1 dd i
LMK T RE B AT | 280 i PR A | 22 L e AC I =X
AL ERRAS I A Be pi 22 JAE 55 22 AL B3 [ A
Z LHRERN o0y D) BERR IG5 80 T, (LA i
A REIE TR JHG 3R e M R A i 1) A% 6 i
I3, A AN A A A BRI 2 KA S ML A
205 IR AR ML 22 18] B, B R AUT I 2 A
MR, AN, o- R A% H eI S S
GME AR E Y IR B O i 2 A 2 A
2R GERITIE, Wt — 2P T X B L S
AR,

-l HBOURPLE A E B, DL PD A
FIARTT M RIBT K F2 Wb A5 0 R R, B
TEIER PD SRR LIS Y 5C B B A
fES R, HATE AR o il & A
TR DY A e RN BAC T4 0t Rk
T TN 95 445 20 T SR, 5 33l ) G #E 3
FHEAE R KLY, XA BIERIE -2 fih
BB FIIIRE AR A0 M 7 1 | A0 1R AL
il b S I 4 B UE 2 D A T AR
W V2 Bl DR 5 N SIS AR B A o 2 i ) 25 A
PAEBOAR IS A B A H, 02 H AT A 28R
AT PRSI BT 5 T 25 99 T S v o i 4 i PR i 58
By, SR 22K -5 fil R 3 1 o Ak /)N LR
W ARREASE I PD 2 LI RERH 2 ou b A7 1k 2%
RN ALE SRR O B AR JR R Tl AR
PRI AIAAH 5, BRI 1 A B 1 SR T 5
I PREE LB BT, Henl BEAY IR PD A
YRR 32 22 B TN 236 5] 32 m 19 50 , 73 81,

N ARTE o5 il i 8 1 OGS B R 7 9 A7
FE2E 55, OGN R 58 A8 1A 110 25 4 i 1 IR A7 78 9
2z, T Rk o-28 fil A% 2R 3 F 3k /) R 1Y
T 2 R RE R 4 TCIR AU AN I 3 R R | 3T AR R AT
GE IR FH 22 55 DRI A5 T A5 SR G, L 34 i 2 i 9
TR F0 9 3L BRI RAE DG , 491 - 4 SVCA %
14k Y5 Gba PINK1 LRRK2 %5 PD #H XK TY
SAZE A, FUCEEE, 256 RE 503, hn 3
EETRNARERFZHRAS, WA T2
SR NSRRI RS BIR BAh, EAR K
KNP IEZ L WO e AR P4 R iz 3l
FEAR AT M2 AR Al B A Y e 0 R o R AR AU b e
PR S A A BRAR OGP . YT B B, o il A% 2R
ek Rk /)N BRSBTS J2 F 5% HE B0 ML ) 2 22
T H B 455 A N 5 T B e R 5
WL AL Tt o — 20 B T AR U SC M 5 i IR
AL, Ak PD BRI FE R B0 O 3 s 2 ik
SRR BN FR (A o- S fil A% B 1B I B &) /]S
AR ) AR ] R B 5 PR LA K £ R S Db I
SEHEEL, O PD W R 2R 58 SRS VTR YT R B
PRAMLTE i 0 S g S0 S A
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