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[ Abstract]  Aging is an inevitable biological process in organisms, accompanied by the decline of multiple
physiological functions and increased risk of diseases. With the intensification of global aging, the research associated
with mechanisms and the development of anti-aging drugs have become critical topics in the biomedical field. Aging
animal models are pivotal tools for investigating aging mechanisms and developing anti-aging interventions. Model
organisms commonly used in aging research include nematodes ( Caenorhabditis elegans) , fruit flies ( Drosophila
melanogaster) , mice ( Mus musculus) , rats ( Rattus norvegicus) , naked-mole-rats (e. g. , Heterocephalus glaber) ,
and rhesus macaques ( Macaca mulaiia). Considering experimental costs and time constraints, mice represent the
most extensively employed mammalian model. Under standard housing conditions, mice develop aging phenotypes at

approximately 18 months of age, Resultsing in lengthy and costly experimental timelines. To accelerate research,
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scientists have established diverse progeroid mouse models through genetic, pharmacological, and environmental

interventions. Given the tissue-specific heterogeneity of aging, distinct progeria models are required to investigate

aging mechanisms across different organ systems. Notably, each model exhibits unique advantages and limitations in

mimicking human aging phenotypes, screening therapeutic targets, and evaluating anti-aging compounds. This review

comprehensively examines morphological, physiological, and pathological variations among established progeria

models, delineates their context-dependent applications and inherent constraints, and provides a systematic framework

for model selection in fundamental aging research and translational geroscience, with perspectives on future method

ological developments.
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