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[ Abstract]  Adipose-derived exosomes have emerged as important mediators of intercellular communication in
the regulation of lipid metabolism, and their role has become a major focus of research in recent years. Lipid
metabolism is closely associated with energy homeostasis and a wide range of metabolic diseases, including obesity,
diabetes, and cardiovascular disorders. Adipose-derived exosomes may contribute to the maintenance of metabolic
balance by regulating adipocyte secretory functions, energy metabolic pathways, and signaling between adipose tissue
and other organs. They play particularly important roles in insulin resistance and adipose deposition, and they have

been implicated in the development of metabolic diseases. Although multiple studies have investigated the potential
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mechanisms of adipose-derived exosomes, their functions in various physiological and pathological states remain

unclear. This review summarizes recent research advances regarding adipose-derived exosomes in lipid metabolic

diseases, with emphasis on their roles in adipocyte function, energy metabolism, and metabolic disease progression.

These advances provide new perspectives for basic research and potential strategies for metabolic disease intervention.
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