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[ Abstract] Neural loops are formed by interconnections between neurons through synaptic structures, which are the
basic units of information transmission and processing in the brain and play an important role in the regulation of neural
functions. After stroke, neural connections between the infarct and peri-infarct regions and the remote area are damaged,
resulting in patients being at risk of neurological dysfunction or even disability. However, with advances in detection
technology, an increasing number of studies are demonstrating that patients with stroke can undergo some functional
recovery during the chronic phase, possibly via a mechanism related to the re-establishment of synaptic connections and
neural circuits. Therefore, the development of specific technology to identify and manipulate neuronal activity patterns, as

well as the use of high-resolution temporal and spatial imaging strategies to decipher these neurological processes, will allow
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us to understand the whole-brain network dynamics of stroke recovery and the mechanisms by which neural loop
reestablishment occurs. Furthermore, we may be able to neurobiologically comprehend the closed-loop mechanisms that
underlie the development of stroke pathology and their relationship to behavioral outcomes. Current technologies used for
studying neural circuits include optogenetics, chemical genetics, in wvivo calcium imaging, and functional magnetic
resonance imaging. This article introduces the working principles of these four major technologies and focuses on
summarizing the result of their respective application in resolving neural remodeling after stroke. We briefly analyze the
application scenarios, advantages and disadvantages, and future development trends of each technique. This paper will help
clinical and basic researchers to use these technologies to discover new therapeutic strategies and evaluate the effectiveness
of rehabilitation strategies.
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Table 1 Comparison of optogenetic and chemogenetics technology
Optogenetics Chemogenetics
Effect Identifying and manipulating Spec’ific groups of neurons can help reveal the causal relatioonship between changes in neural networks and
behavior.
” , G (GPCRs) :
s ’ GPCRs GPCR O
Exogeno’us photosensitive protein gene is introduced i;to target . ’ 7
cells, leading to the expression of photosensitive channel By altering different G protein-coupled receptors ( GPCRs), the
Principle proteins on the cell membrane. Under the stimulation of light at  modified receptors can only be activated or inhibited by specially

the of

photosensitive channel proteins on the cell membrane can be

different  wavelengths , activation and deactivation
controlled, thereby regulating the opening and closing of ion
channels on the membrane. This results in selectivity for the
passage of cations or anions, causing changes in the membrane
potential on both sides of the cell membrane, and thus achieving

selective excitation or inhibition of the cell.

synthesized artificial compounds. Once these GPCRs are activated
or inhibited, they selectively impact various GPCR cascade
reactions to regulate cellular signal transduction, thus controlling
the neuronal firing process and eliciting diverse excitatory changes

in cells.
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adjusted ; 1. A non-invasive approach that does not require cranial surgery
2. s . s for fiber implantation;
. 5 2. ’ ’
Operationally . . . . . . . o
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Table 2 Comparison of in vivo two-photon calcium imaging and magnetic resonance imaging technology
In vivo two-photon calcium imaging Magnetic resonance imaging
Effect Identifying and manipulating specific groups of neurons can help unveil the causal relationship between neural network changes and
behavior.
Calcium ions are crucial intracellular signaling molecules in neurons. . . . . . °
i . This imaging method is established by using radiofrequency
When the neuronal membrane depolarizes and conducts an action . . . .
L . . . electromagnetic waves to excite substances with non-zero spin
Principle potential to the axon terminals, voltage-gated calcium channels on the

cell membrane open, allowing a large influx of calcium ions. Vesicles
containing neurotransmitters are then released from the presynaptic
membrane to the postsynaptic membrane, enabling downstream
neurons to receive signals from upstream ones. By using calcium
indicators, changes in calcium ion concentration within neurons can be
represented through fluorescence intensity, which is then monitored

using a fluorescence microscope to observe neuronal activity.

atomic nuclei in a static magnetic field, generating nuclear
magnetic resonance. The resonance signals are then collected

by an induction coil and processed through specific

mathematical methods to create images.
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In vivo two-photon calcium imaging

Magnetic resonance imaging

Advantages and

disadvantages

Application

Advantages: This method allows for the recording of activity from
individual neurons within neural networks or groups of neurons in the
network, and enables analysis specific to cell types and neuronal
subpopulations.

Disadvantages: Neuronal activity at the cellular resolution level can
only be examined within a limited field of view, making it impossible
to monitor the collective activity of neuronal groups across different
brain regions.

1. ;

1. Recording the activity of neurons in vivo, as well as the activity of
their dendrites and dendritic spines;
2.

2. Performing functional imaging of presynaptic and postsynaptic sites

5

of neurons;
3. ;
3. Utilized to understand the relationship between individual neurons
and the neural circuits they belong to;
4. ,
o
4. Formation of new synapses and axonal processes, accompanied by
calcium transients, can be used to reflect the neuroplasticity processes

in neural circuits.

Advantages: It allows monitoring of neuronal reorganization
processes at the macroscopic anatomical level in the same
animal ; capable of reflecting the interactions between changes
in global brain functional states and structural connectivity.
Disadvantages : Low temporal and spatial resolution.

1. DTI

5
1. DTI allows for the imaging of fibers within specific neural
circuits, reflecting the changes in these fibers under disease
conditions and throughout the recovery process;
2. fMRI

B 5

2. fMRI can reveal changes in neuronal activity during
manipulations controlling neuronal activity, as well as
changes in functional connectivity at different times in
longitudinal studies;
3. o

3. Examines whole-brain reorganization.
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