Rodent Models of Schizophrenia and their behavioral evaluation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • | | | |
  • Comments
    Abstract:

    Schizophrenia is a common and serious mental disorder, which causes great harm to patients and their families. Because of the complicated pathogenesis of schizophrenia, there are still many problems in its drug treatment. Stable and reliable animal models are required for preclinical studies of new drugs. In this article, we reviewed the rodent models associated with positive symptoms, negative symptoms and cognitive impairment of schizophrenia and the behavioral evaluation on these models, hoping to provide useful references of animal models for the antipsychotic drug screening and preclinical studies.

    Reference
    [1] Mouri A, Nagai T, Ibi D, et al. Animal models of schizophrenia for molecular and pharmacological intervention and potential candidate molecules [J]. Neurobiol Dis, 2013, 53: 61-74.
    [2] Pratt J, Winchester C, Dawson N, et al. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap [J]. Nat Rev Drug Discov, 2012, 11(7): 560-579.
    [3] Usun Y, Eybrard S, Meyer F, et al. Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex [J]. Behav Brain Res, 2013, 256: 229-237.
    [4] Assié MB, Dominguez H, Consul-Denjean N, et al. In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles [J]. Naunyn Schmiedebergs Arch Pharmacol, 2006, 373(6): 441-450.
    [5] 束庆, 段直光, 胡刚. 多巴胺在精神分裂症阳性症状中的心理机制:新近理论和研究进展[J]. 科学通报, 2012, 57 (35): 3384-3398.
    [6] Jash R, Chowdary KA. Ethanolic extracts of Alstonia Scholaris and Bacopa Monniera possess neuroleptic activity due to anti-dopaminergic effect [J]. Pharmacognosy Res, 2014, 6(1): 46-51.
    [7] Pallare MA, Nadal RA, Silvestre JS, et al. Effects of ketamine, a noncompetitive NMDA antagonist, on the acquisition of the lever-press response in rats [J]. Physiol Behav, 1995, 57(2): 389-392.
    [8] Guo XC, Hamilton P, Reish NJ, et al. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia [J]. Neuropsychopharmacology, 2009, 34(7): 1659-1672.
    [9] Neilla JC, Hartea MK, Haddad PM, et al. Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: a translational link to humans [J]. Eur Neuropsychopharmacol, 2014, 24(5): 822-835.
    [10] Pedersen CS, Sørensen DB, Parachikova AI, et al. PCP-induced deficits in murine nest building activity: employment of an ethological rodent behavior to mimic negative-like symptoms of schizophrenia [J]. Behav Brain Res, 2014, 273: 63-72.
    [11] Lazcano Z, Solis O, Díaz A, et al. Dendritic morphology changes in neurons from the ventral hippocampus, amygdala and nucleus accumbens in rats with neonatal lesions into the prefrontal cortex [J]. Synapse, 2015, DOI 10.1002.
    [12] Tsenga KY, Chambersb RA, Lipskac BK. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia [J]. Behav Brain Res, 2009, 204(2): 295-305.
    [13] Meyer U, Nyffeler M, Schwendener S, et al. Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge [J]. Neuropsychopharmacology, 2008, 33(2): 441-456.
    [14] Featherstone RE, Shin R, Kogan JH, et al. Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: Implications for schizophrenia prodromal population [J]. Neurobiol Dis, 2014, 73: 289-295.
    [15] Millar JK, Wilson-Annan JC, Anderson S, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia [J]. Hum Mol Genet, 2000, 9(9): 1415-1423.
    [16] 任君, 赵天, 韩玉英, 等. DISC1基因及其编码蛋白的结构功能与精神分裂症的相关研究 [J]. 生理科学进展, 2014, 45(6): 442-447.
    [17] Grace CE, Schaefer TL, Herring NR, et al. Effect of a neurotoxic dose regimen of (+)-methamphetamine on behavior, plasma corticosterone, and brain monoamines in adult C57BL/6 mice [J]. Neurotoxicol Teratol, 2010, 32(3): 346-355.
    [18] Steed E, Jones CA, McCreary AC. Serotonergic involvement in methamphetamine-induced locomotor activity: a detailed pharmacological study [J]. Behav Brain Res, 2011, 220(1): 9-19.
    [19] Miyamoto Y, Nitta A. Behavioral phenotypes for negative symptoms in animal models of schizophrenia [J]. J Pharmacol Sci, 2014, 126(4): 310-320.
    [20] Geyer MA, Krebs-Thomson K, David L, et al. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review [J]. Psychopharmacology (Berl), 2001, 156(2-3): 117-154.
    [21] 李量, 李楠欣. 建立新一代的精神分裂症动物模型 [J]. 心理科学进展, 2008, 16(3): 399-403.
    [22] 李晓白, 方贻儒, 王祖承, 等. 精神分裂症动物模型研究进展 [J]. 上海精神医学, 2004, 16(3): 184-186.
    [23] Baruch I, Hemsley DR, Gray JA. Differential performance of acute and chronic schizophrenics in a latent inhibition task [J]. J Nerv Ment Dis, 1998, 176(10): 598-606.
    [24] 邵枫, 王玮文, 刘美, 等. 精神分裂症的潜伏抑制动物模型 [J]. 心理科学进展, 2008,16(3): 392-398.
    [25] Spieker EA, Astur RS, West JT, et al. Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia [J]. Schizophr Res, 2012, 135(1-3): 84-89.
    [26] Yang SS, Huang CL, Chen HE, et al. Effects of SPAK knockout on sensorimotor gating, novelty exploration, and brain area-dependent expressions of NKCC1 and KCC2 in a mouse model of schizophrenia [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 61: 30-36
    [27] Pedersen CS, Goetghebeur1 P, Dias R. Chronic infusion of PCP via osmotic mini-pumps: A new rodent model of cognitive deficit in schizophrenia characterized by impaired attentional set-shifting (ID/ED) performance [J]. J Neurosci Methods, 2009, 185(1): 66-69.
    [28] Lainiola M, Procaccini C, Linden AM. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests [J]. Behav Brain Res. 2014, 266: 94-103.
    [29] Qiao J, Gao J, Shu Q, et al. Long-lasting sensitization induced by repeated risperidone treatment in adolescent Sprague-Dawley rats: A possible D2 receptor mediated phenomenon [J]. Psychopharmacology (Berl), 2014, 231(8): 1649-1659.
    [30] Fajnerová I, Rodriguez M, Levcík D, et al. A virtual reality task based on animal research-spatial learning and memory in patients after the first episode of schizophrenia [J]. Front Behav Neurosci, 2014, 8: 1-15.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1737
  • PDF: 2956
  • HTML: 0
  • Cited by: 0
History
  • Revised:August 10,2015
  • Online: September 30,2015
Article QR Code