CRISPR/Cas9系统:构建非人灵长类动物疾病模型的新技术
作者:
基金项目:

科技部国家重大科学研究计划项目(课题编号:2012CBA01304)和分子发育生物学国家重点实验室经费资助。


CRISPR/Cas9 system:a new gene modification tool for establishing disease models in non-human primates
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    动物疾病模型在研究人类疾病致病机理和药物筛选中起到了关键作用。非人灵长类动物由于与人类更为接近,在探究人类神经退行性疾病、神经精神疾病及人类认知功能、神经环路等方面具有巨大的优势可成为研究和药物筛选的重要疾病模型。然而,由于缺乏大动物的胚胎干细胞系,传统的基因打靶技术难于用来建立灵长类动物疾病模型。最近发展的基因编辑新技术CRISPR/Cas9系统在定向对基因进行修饰上展现出了巨大的潜力。本文将介绍CRISPR/Cas9技术的发展和应用,以及非灵长类动物作为神经退行性疾病模型的优势和意义。

    Abstract:

    Animal models are highly valuable systems that have been extensively used to elucidate human disease pathogenesis and to find therapeutic ways to treat human diseases. Since non-human primates are close to humans,monkeys are important model species in exploring the mechanisms and treatment of human neurodegenerative diseases, neuropsychiatric disorders, cognitive function, and neural circuits. However, due to the lack of embryonic stem cell lines in large animals, the traditional gene targeting technology is difficult to establish primate animal models of human diseases. CRISPR/Cas9, as a recently developed tool for genome modifications, has been successfully used to target genomic loci in mouse, rat, monkey, and other species. Here, we discuss the utilization of CRISPR/Cas9 technology in establishing monkey models for studying human neurodegenerative diseases.

    参考文献
    [1] 卢丽, 陈系古, 黄冰. 基因敲除动物的研究和应用[J]. 中国实验动物学报, 2006,14:152-156.
    [2] Jansen R, Embden J, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002,43:1565-1575.
    [3] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005,151:653-663.
    [4] Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea[J]. Mol Cell, 2010,37:7-19.
    [5] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007,315:1709-1712.
    [6] Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008,321:960-964.
    [7] Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells[J]. Elife, 2013,Jan 29;2:e00471.
    [8] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013,339:819-23.
    [9] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013,339:823-826.
    [10] Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nature Biotechnol, 2013.31:230-232.
    [11] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnol, 2013,31:686-688.
    [12] Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014.http://dx.doi.org/10.1016/j.cell.2014.01.027
    [13] 马元武, 张连峰. 利用 CRISPR/Cas9 技术实现快速, 经济的大鼠条件基因敲除技术[J]. 中国比较医学杂志, 2014,3:015.
    [14] Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918..
    [15] Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013,13:659-662.
    [16] Schwank G, Koo B-K, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients[J]. Cell Stem Cell, 2013,13:653-658.
    [17] Charpentier E, Doudna JA. Biotechnology: rewriting a genome[J]. Nature, 2013,495:50-51.
    [18] Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease[J]. Annu Rev Genet, 2005,39:153-171.
    [19] Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view[J]. Nature Rev Genet, 2007,8:353-367.
    [20] Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson's disease[J]. Neuron, 2010,66:646-661.
    [21] Wirths O, Bayer TA. Neuron loss in transgenic mouse models of Alzheimer's disease[J]. Int J Alzheimer's Dis, 2010,(2010), Article ID 723782.
    [22] Ribeiro FM, Camargos ERdS, Souza LCd, et al. Animal models of neurodegenerative diseases[J]. Revista Bras Psiquiatr, 2013,35(Suppl 2):S82-S91.
    [23] Shen H. Precision gene editing paves way for transgenic monkeys[J]. Nature, 2013,503:14-15.
    [24] Yan G, Zhang G, Fang X, et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques[J]. Nature Biotechnol, 2011,29:1019-1023.
    [25] Gibbs RA, Rogers J, Katze MG, et al. Evolutionary and biomedical insights from the rhesus macaque genome[J]. Science, 2007,316:222-234.
    [26] Chan A, Chong K-Y, Martinovich C, et al. Transgenic monkeys produced by retroviral gene transfer into mature oocytes[J]. Science, 2001,291:309-312.
    [27] Yang S-H, Cheng P-H, Banta H, et al. Towards a transgenic model of Huntington's disease in a non-human primate[J]. Nature, 2008,453:921-924.
    [28] Pennisi E. Editing of targeted genes proved possible in monkeys[J]. Science, 2014,343:476-477.
    [29] 李铁民,杜波.CRISPR-QS系统与细菌和噬菌体的共进化.遗传,2011,33:213-218.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨伟莉,涂著池,李晓江. CRISPR/Cas9系统:构建非人灵长类动物疾病模型的新技术[J].中国比较医学杂志,2014,24(8):70~74.

复制
分享
文章指标
  • 点击次数:2104
  • 下载次数: 1412
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 最后修改日期:2014-06-23
  • 在线发布日期: 2014-09-03
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭