回毒银花散中各药及药物不同配比对耐甲氧西林金黄色葡萄球菌的作用研究
作者单位:

长春中医药大学

基金项目:

吉林省教育厅科学技术研究项目


Study on the effects of various herbs and different proportions of herbs in Huidu Yinhua Powder on methicillin-resistant Staphylococcus aureus
Author:
Affiliation:

Changchun University of Chinese Medicine

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | | | |
  • 文章评论
    摘要:

    目的:研究《外科正宗》中回毒银花散对耐甲氧西林金黄色葡萄球菌(MRSA)的抑菌能力以及毒力因子α-溶血素(Hla)活性和生物被膜形成的抑制作用,同时探究回毒银花散最佳配比为古方新用提供实验支撑。方法:通过最低抑菌浓度(MIC)、最低杀菌浓度(MBC)、纸片扩散法(K-B法)分析回毒银花散及组方中各味药对MRSA菌株USA300的抑制效果,溶血实验、Hla中和实验、Hla寡聚实验、免疫印记分析实验验证药物以何种形式抑制毒力因子Hla的活性,生物被膜形成实验评价回毒银花散对生物被膜的抑制效果,最后正交实验探究回毒银花散的最佳配比。结果:回毒银花散抑制MRSA菌株,MIC90为64 mg/mL,MBC为256 mg/mL,抑菌圈直径为7.50±0.50 mm。回毒银花散还通过抑制Hla的释放抑制Hla的活性,最小有效浓度(MEC)为16 mg/mL,抑制生物被膜形成的MEC为8 mg/mL。回毒银花散中金银花、黄芪只影响MRSA溶血活性以及生物被膜形成但不抑制细菌的生长,两药溶血活性MEC以及生物被膜形成MEC均为32 mg/mL;甘草抑菌能力较强,MIC90为8 mg/mL,生物被膜MEC为1 mg/mL,在亚抑菌浓度下未表现出抑制溶血活性。最后正交实验显示,当回毒银花散中金银花、黄芪、甘草的比例为1:2:4时,MIC90为16 mg/mL,溶血活性MEC为8 mg/mL,生物膜形成MEC为4 mg/mL,均为9组中最低。结论:回毒银花散在亚抑菌浓度下可影响MRSA的溶血活性以及生物被膜形成,其中金银花、黄芪、甘草的最佳比例为1:2:4。

    Abstract:

    Objective: To study the inhibitory ability of Huidu Yinhua Powder, from “Orthodox Manual of External Medicine”, on methicillin?resistant staphylococcus aureus (MRSA) as well as the inhibitory effect of virulence factor α-hemolysin (Hla) activity and biofilm formation, and at the same time, to explore the optimal ratios of Huidu Yinhua Powder, to provide experimental support for the new use of the ancient formula. Methods: The inhibitory effects of Huidu Yinhua Powder and the herbs in the formula on USA300 were analyzed by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and disk diffusion assay (K-B method). Hemolysis assay, neutralization assay, Oligomerization assay, Western Blot (WB) to verify in which form the drug inhibits the activity of the virulence factor alpha-hemolysin (Hla). The biofilm assay was performed to evaluate the inhibitory effect of Huidu Yinhua Powder on biofilm, while finally orthogonal experiments were performed to explore the optimal ratios of Huidu Yinhua Powder. Results: Huidu Yinhua Powder inhibited the MRSA strain with a MIC90 of 64 mg/mL and an MBC of 256 mg/mL, with antibacterial circle diameter of 7.50±0.50 mm. Huidu Yinhua Powder inhibits Hla activity by inhibiting Hla secretion and the minimum effective concentration (MEC) was 16 mg/mL, while the MEC of biofilm was 8 mg/mL. In Huidu Yinhua Powder, Honeysuckle and Astragalus only affected the hemolytic activity of MRSA and the formation of biofilm without inhibiting the growth of bacteria, the hemolytic activity MEC and the biofilm MEC of both of them were 32 mg/mL. Glycyrrhiza had a strong bacterial inhibitory capacity, with a MIC90 of 8 mg/mL and a biofilm MEC of 1 mg/mL, without showing inhibitory hemolytic activity at subinhibitory concentrations. The final orthogonal experiment showed that when the ratio of honeysuckle: astragalus: glycyrrhiza in Huidu yinhua Powder was 1:2:4, the MIC90 was 16 mg/mL, the hemolytic activity MEC was 8 mg/mL, and the biofilm MEC was 4 mg/mL, all of which were the lowest among the nine groups. Conclusion: Huidu Yinhua Powder affects the hemolytic activity and biofilm formation of MRSA at sub inhibitory concentrations, with the optimal ratio of honeysuckle, astragalus, and glycyrrhiza being 1:2:4.

    参考文献
    [1] Stryjewski M E, Chambers H F. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus[J]. Clinical Infectious Diseases, 2008, 46(Supplement_5): S368-S377.
    [2] Selb R, Albert-Braun S, Weltzien A, et al. Characterization of methicillin-resistant Staphylococcus aureus from children at hospital admission: experiences from a hospital in a German metropolitan area[J]. The Pediatric Infectious Disease Journal, 2022, 41(9): 720-727.
    [3] Zhong J, Wei M, Yang C, et al. Molecular Epidemiology of Community-Acquired Methicillin-Resistant Staphylococcus aureus and Clinical Characteristics of Different Sites of Infection[J]. Infection and Drug Resistance, 2023: 1485-1497.
    [4] Esposito S, Noviello S, Leone S. Epidemiology and microbiology of skin and soft tissue infections[J]. Current opinion in infectious diseases, 2016, 29(2): 109-115.
    [5] Miller L G, Perdreau-Remington F, Rieg G, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles[J]. New England Journal of Medicine, 2005, 352(14): 1445-1453.
    [6] Livorsi D J, Nair R, Lund B C, et al. MRSA prevalence and hospital-level antibiotic use: A retrospective study across 122 acute-care hospitals[J]. Infection Control Hospital Epidemiology, 2021, 42(3): 353-355.
    [7] Pulia M S, Anderson J, Ye Z, et al. Expression of staphylococcal virulence genes In situ in human skin and soft tissue infections[J]. Antibiotics, 2022, 11(4): 527.
    [8] Maretzky T, Reiss K, Ludwig A, et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation[J]. Proceedings of the National Academy of Sciences, 2005, 102(26): 9182-9187.
    [9] Wilke G A, Wardenburg J B. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury[J]. Proceedings of the National Academy of Sciences, 2010, 107(30): 13473-13478.
    [10] Essmann F, Bantel H, Totzke G, et al. Staphylococcus aureus α-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation[J]. Cell Death Differentiation, 2003, 10(11): 1260-1272.
    [11] Cohen T S, Boland M L, Boland B B, et al. S. aureus evades macrophage killing through NLRP3-dependent effects on mitochondrial trafficking[J]. Cell reports, 2018, 22(9): 2431-2441.
    [12] Schilcher K, Horswill A R. Staphylococcal biofilm development: structure, regulation, and treatment strategies[J]. Microbiology and Molecular Biology Reviews, 2020, 84(3): 10.1128/mmbr. 00026-19.
    [13] R?mling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies[J]. Journal of internal medicine, 2012, 272(6): 541-561.
    [14] 陈实功编.外科正宗[M].人民卫生出版社,1964.
    [15] 耐甲氧西林金黄色葡萄球菌感染防治专家共识2011年更新版[J].中华实验和临床感染病杂志(电子版),2011,5(03):372-384.
    [16] Uhlemann A C, Dordel J, Knox J R, et al. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community[J]. Proceedings of the National Academy of Sciences, 2014, 111(18): 6738-6743.
    [17] Tacconelli E. Antimicrobial use: risk driver of multidrug resistant microorganisms in healthcare settings[J]. Current opinion in infectious diseases, 2009, 22(4): 352-358.
    [18] Nakase K, Koizumi J, Fukumoto S, et al. Increased prevalence of minocycline-resistant Staphylococcus epidermidis with tet (M) by tetracycline use for acne treatment[J]. Microbial Drug Resistance, 2022, 28(8): 861-866.
    [19] Fritz S A, Wylie T N, Gula H, et al. Longitudinal dynamics of skin bacterial communities in the context of Staphylococcus aureus decolonization[J]. Microbiology spectrum, 2022, 10(2): e02672-21.
    [20] Creech C B, Al-Zubeidi D N, Fritz S A. Prevention of recurrent staphylococcal skin infections[J]. Infectious Disease Clinics, 2015, 29(3): 429-464.
    [21] Cella M A, Coulson T, MacEachern S, et al. Probiotic disruption of quorum sensing reduces virulence and increases cefoxitin sensitivity in methicillin-resistant Staphylococcus aureus[J]. Scientific Reports, 2023, 13(1): 4373.
    [22] Salgaonkar N, Kadamkode V, Kumaran S, et al. Glycerol fermentation by skin bacteria generates lactic acid and upregulates the expression levels of genes associated with the skin barrier function[J]. Experimental Dermatology, 2022, 31(9): 1364-1372.
    [23] 黄宫绣纂.本草求真[M].上海科学技术出版社,1959.
    [24] 李文举,罗福龙,王凤忠等.金银花水提物改善脓毒血症的物质基础研究[J].中国比较医学杂志,2022,32(08):79-89.
    [25] 张臻,阙华发.黄芪多糖对糖尿病溃疡大鼠炎症期相关因素的影响[J].中药新药与临床药理,2022,33(05):616-623.
    [26] 余玲,董瑞鸿,宋秋艳等.黄芪桂枝汤治疗糖尿病足疗效及对患者周围神经感觉阈值、微炎症状态的影响[J].中国皮肤性病学杂志,2019,33(01):82-87.
    [27] 刁元元,李玉梅,李晓文等.黄芪抗糖尿病并发症的研究进展[J].中国比较医学杂志,2021,31(04):123-128.
    [28] 李琼锋.黄芪桂枝汤联合西药治疗老年糖尿病足的临床观察[J].四川中医,2017,35(05):113-115.
    [29] Zhuobin X,Ze X,Jiake G, et al. In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds.[J]. Journal of colloid and interface science,2023,650(Pt B).
    [30] 张鹰,熊鑫,马浩然等.甘草油的HPLC-MS/MS法分析及抑菌作用研究[J].时珍国医国药,2021,32(04):861-864.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:257
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-04
  • 最后修改日期:2023-11-06
  • 录用日期:2024-01-26
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭