SHP2在消化系统肿瘤中的研究进展
作者单位:

1.河北北方学院;2.河北北方学院附属第一医院普通外科;3.河北北方学院附属第一医院

中图分类号:

R735.3????????????????????????????????????

基金项目:

2022年河北省省自然科学精准医学联合(编号:H2022405033)


Research progress of SHP2 in digestive system tumors
Author:
Affiliation:

1.Hebei North University,Zhangjiakou,Hebei Province;2.Department of General Surgery,The First Affiliated Hospital of Hebei North University,Zhangjiakou,Hebei Province;3.Department of General Surgery, The First Affiliated Hospital of Hebei North University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • | | | |
  • 文章评论
    摘要:

    【摘要】 目前恶性肿瘤已经成为威胁人类身体健康的主要疾病之一,致残率、致死率在逐年上升。Src同源性2的蛋白酪氨酸磷酸酶2(SHP2)是PTP家族中重要的一员,是一种功能广泛的酪氨酸磷酸酶,其在多种实体肿瘤中的表达量升高,在侵袭、转移、增殖、凋亡、耐药性等方面发挥着重要调控作用。已有大量研究表明,SHP2在许多实体瘤的发生和发展中起着非常重要的作用,但现在尚无系统的报道SHP2在消化系统肿瘤中的作用。基于此该文综述了SHP2在7种消化系统中不同肿瘤的生物学功能及临床意义,探讨其在不同癌症发展阶段的作用与机制,并总结与展望SHP2抑制剂的发展,进一步寻找有效的早期诊断和基因治疗的潜在靶点,这对癌症患者生存率的提高具有十分重要的意义。

    Abstract:

    【Abstract】 Currently malignant tumors have become one of the major diseases threatening human health,with disability and mortality rates increasing year by year.Protein tyrosine phosphatase 2 (SHP2) of Src homology 2, an important member of the PTP family, is a tyrosine phosphatase with a wide range of functions,whose expression is elevated in a wide range of solid tumors,and plays a important regulatory role in invasion,metastasis,proliferation,apoptosis and drug resistance.A large number of studies have shown that SHP2 plays a very important role in the genesis and development of many solid tumors,but there is no systematic report on the role of SHP2 in digestive system tumors.Based on this paper,we reviewed the biological functions and clinical significance of SHP2 in seven different tumors of the digestive system,explored its roles and mechanisms in different cancer development stages,and summarized and looked forward to the development of SHP2 inhibitors,to further search for potential targets for effective early diagnosis and gene therapy,which is of great significance for the improvement of cancer patients' survival rate.

    参考文献
    [1] Reis E S, Mastellos D C, Ricklin D, et al. Complement in cancer: untangling an intricate relationship[J]. Nat Rev Immunol, 2018, 18(1): 5-18.
    [2] Hojman P, Gehl J, Christensen J F, et al. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment[J]. Cell Metab, 2018, 27(1): 10-21.
    [3] Mattiuzzi C, Lippi G. Current Cancer Epidemiology[J]. J Epidemiol Glob Health, 2019, 9(4): 217-222.
    [4] Cao W, Chen H D, Yu Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791.
    [5] Wu C, Li M, Meng H, et al. Analysis of status and countermeasures of cancer incidence and mortality in China[J]. Sci China Life Sci, 2019, 62(5): 640-647.
    [6] Chan R J, Feng G S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase[J]. Blood, 2007, 109(3): 862-7.
    [7] Matozaki T, Murata Y, Saito Y, et al. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation[J]. Cancer Sci, 2009, 100(10): 1786-93.
    [8] Liu Q, Qu J, Zhao M, et al. Targeting SHP2 as a promising strategy for cancer immunotherapy[J]. Pharmacol Res, 2020, 152: 104595.
    [9] Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes'' Cytokine and Inhibitory Receptor Signaling[J]. Front Immunol, 2019, 10: 2468.
    [10] Roberts A E, Allanson J E, Tartaglia M, et al. Noonan syndrome[J]. Lancet, 2013, 381(9863): 333-42.
    [11] Bentires-Alj M, Paez J G, David F S, et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia[J]. Cancer Res, 2004, 64(24): 8816-20.
    [12] Kerr D L, Haderk F, Bivona T G. Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment[J]. Curr Opin Chem Biol, 2021, 62: 1-12.
    [13] Bard-Chapeau E A, Li S, Ding J, et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis[J]. Cancer Cell, 2011, 19(5): 629-39.
    [14] Song Z, Wang M, Ge Y, et al. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies[J]. Acta Pharm Sin B, 2021, 11(1): 13-29.
    [15] Hof P, Pluskey S, Dhe-Paganon S, et al. Crystal structure of the tyrosine phosphatase SHP-2[J]. Cell, 1998, 92(4): 441-50.
    [16] Song Y, Zhao M, Zhang H, et al. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials[J]. Pharmacol Ther, 2022, 230: 107966.
    [17] Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer[J]. J Cell Mol Med, 2015, 19(9): 2075-83.
    [18] Tajan M, De Rocca Serra A, Valet P, et al. SHP2 sails from physiology to pathology[J]. Eur J Med Genet, 2015, 58(10): 509-25.
    [19] Zhang Z Y, Wang Y, Dixon J E. Dissecting the catalytic mechanism of protein-tyrosine phosphatases[J]. Proc Natl Acad Sci U S A, 1994, 91(5): 1624-7.
    [20] Zhang Z Y. Kinetic and mechanistic characterization of a mammalian protein-tyrosine phosphatase, PTP1[J]. J Biol Chem, 1995, 270(19): 11199-204.
    [21] Denu J M, Lohse D L, Vijayalakshmi J, et al. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis[J]. Proc Natl Acad Sci U S A, 1996, 93(6): 2493-8.
    [22] Xiao P, Wang X, Wang H M, et al. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop[J]. Int J Biochem Cell Biol, 2014, 57: 84-95.
    [23] Rehman A U, Rahman M U, Khan M T, et al. The Landscape of Protein Tyrosine Phosphatase (Shp2) and Cancer[J]. Curr Pharm Des, 2018, 24(32): 3767-3777.
    [24] Chong P S Y, Zhou J, Lim J S L, et al. IL6 Promotes a STAT3-PRL3 Feedforward Loop via SHP2 Repression in Multiple Myeloma[J]. Cancer Res, 2019, 79(18): 4679-4688.
    [25] Xie H, Huang S, Li W, et al. Upregulation of Src homology phosphotyrosyl phosphatase 2 (Shp2) expression in oral cancer and knockdown of Shp2 expression inhibit tumor cell viability and invasion in vitro[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 117(2): 234-42.
    [26] Wang H C, Chiang W F, Huang H H, et al. Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis[J]. BMC Cancer, 2014, 14: 442.
    [27] Qi C, Han T, Tang H, et al. Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3[J]. Int J Mol Sci, 2017, 18(1).
    [28] Amieva M, Peek R M, Jr. Pathobiology of Helicobacter pylori-Induced Gastric Cancer[J]. Gastroenterology, 2016, 150(1): 64-78.
    [29] Kabir S. Effect of Helicobacter pylori eradication on incidence of gastric cancer in human and animal models: underlying biochemical and molecular events[J]. Helicobacter, 2009, 14(3): 159-71.
    [30] Jiang J, Jin M S, Kong F, et al. Increased expression of tyrosine phosphatase SHP-2 in Helicobacter pylori-infected gastric cancer[J]. World J Gastroenterol, 2013, 19(4): 575-80.
    [31] Yamazaki S, Yamakawa A, Ito Y, et al. The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa[J]. J Infect Dis, 2003, 187(2): 334-7.
    [32] Jiang J, Jia Z F, Kong F, et al. Association of polymorphism of PTPN 11 encoding SHP-2 with gastric atrophy but not gastric cancer in Helicobacter pylori seropositive Chinese population[J]. BMC Gastroenterol, 2012, 12: 89.
    [33] Chan G, Kalaitzidis D, Neel B G. The tyrosine phosphatase Shp2 (PTPN11) in cancer[J]. Cancer Metastasis Rev, 2008, 27(2): 179-92.
    [34] Jiang C, Hu F, Tai Y, et al. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2012, 138(4): 637-46.
    [35] Han T, Xiang D M, Sun W, et al. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients[J]. J Hepatol, 2015, 63(3): 651-60.
    [36] Qin C, Yang G, Yang J, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies[J]. Mol Cancer, 2020, 19(1): 50.
    [37] Ruess D A, Heynen G J, Ciecielski K J, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase[J]. Nat Med, 2018, 24(7): 954-960.
    [38] Frank K J, Mulero-Sánchez A, Berninger A, et al. Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer[J]. Cell Rep Med, 2022, 3(11): 100815.
    [39] Smoot R L, Werneburg N W, Sugihara T, et al. Platelet-derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation[J]. J Cell Biochem, 2018, 119(1): 824-836.
    [40] Sugihara T, Werneburg N W, Hernandez M C, et al. YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by LCK and Independent of LATS Activity[J]. Mol Cancer Res, 2018, 16(10): 1556-1567.
    [41] Hill K S, Roberts E R, Wang X, et al. PTPN11 Plays Oncogenic Roles and Is a Therapeutic Target for BRAF Wild-Type Melanomas[J]. Mol Cancer Res, 2019, 17(2): 583-593.
    [42] Zhao H, Martin E, Matalkah F, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis[J]. Oncogene, 2019, 38(13): 2275-2290.
    [43] Xie J, Si X, Gu S, et al. Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment[J]. J Med Chem, 2017, 60(24): 10205-10219.
    [44] Buckarma E H, Werneburg N W, Conboy C B, et al. The YAP-Interacting Phosphatase SHP2 Can Regulate Transcriptional Coactivity and Modulate Sensitivity to Chemotherapy in Cholangiocarcinoma[J]. Mol Cancer Res, 2020, 18(10): 1574-1588.
    [45] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer[J]. Sci Rep, 2017, 7(1): 17597.
    [46] Cai P, Guo W, Yuan H, et al. Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer[J]. Biomed Pharmacother, 2014, 68(3): 285-90.
    [47] Yu S J, Yu J K, Ge W T, et al. SPARCL1, Shp2, MSH2, E-cadherin, p53, ADCY-2 and MAPK are prognosis-related in colorectal cancer[J]. World J Gastroenterol, 2011, 17(15): 2028-36.
    [48] Gagné-Sansfacon J, Langlois A, Langlois M J, et al. The tyrosine phosphatase Shp-2 confers resistance to colonic inflammation by driving goblet cell function and crypt regeneration[J]. J Pathol, 2019, 247(1): 135-146.
    [49] Heuberger J, Kosel F, Qi J, et al. Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine[J]. Proc Natl Acad Sci U S A, 2014, 111(9): 3472-7.
    [50] Tartaglia M, Niemeyer C M, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia[J]. Nat Genet, 2003, 34(2): 148-50.
    [51] Müller P J, Rigbolt K T, Paterok D, et al. Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia[J]. J Proteomics, 2013, 84: 132-47.
    [52] Legius E, Schrander-Stumpel C, Schollen E, et al. PTPN11 mutations in LEOPARD syndrome[J]. J Med Genet, 2002, 39(8): 571-4.
    [53] Tang K, Jia Y N, Yu B, et al. Medicinal chemistry strategies for the development of protein tyrosine phosphatase SHP2 inhibitors and PROTAC degraders[J]. Eur J Med Chem, 2020, 204: 112657.
    [54] Fodor M, Price E, Wang P, et al. Dual Allosteric Inhibition of SHP2 Phosphatase[J]. ACS Chem Biol, 2018, 13(3): 647-656.
    [55] Quintana E, Schulze C J, Myers D R, et al. Allosteric Inhibition of SHP2 Stimulates Antitumor Immunity by Transforming the Immunosuppressive Environment[J]. Cancer Res, 2020, 80(13): 2889-2902.
    [56] Chirnomas D, Hornberger K R, Crews C M. Protein degraders enter the clinic - a new approach to cancer therapy[J]. Nat Rev Clin Oncol, 2023, 20(4): 265-278.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:310
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-06
  • 最后修改日期:2023-12-02
  • 录用日期:2024-02-21
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭