MHC功能及其转基因小鼠模型的研究进展
作者:
作者单位:

1.牡丹江医学院公共卫生学院;2.军事科学院军事医学研究院微生物流行病研究所,病原微生物生物安全全国重点实验室

基金项目:

国家重点研发计划(2022YFC2304103)


Research progress on MHC function and transgenic mouse models
Author:
Affiliation:

1.Public Health School,Mudanjiang Medical University;2.State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and epidemiology, Academy of Military Medical Sciences

Fund Project:

National Key Research and Development Program of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    主要组织相容性复合体(major histocompatibility complex,MHC)与机体免疫调节密切相关,不仅具有遗传多态性,而且MHC限制性存在种属差异。人类的MHC被称为人白细胞抗原(human leukocyte antigen,HLA),小鼠MHC则被称为H-2。构建人源化MHC转基因小鼠模型是突破MHC种属差异并模拟人体免疫应答特征的重要策略。MHC转基因小鼠主要分为MHC Ⅰ或MHC Ⅱ单转基因小鼠模型和MHC Ⅰ与MHC Ⅱ双转基因小鼠模型。HLA Ⅰ类转基因小鼠模型发展经历了三个阶段,目前采取敲除H-2Kb和H-2Db或者敲除鼠源β2m的策略来消除内源的H-2 I类分子对HLA I类分子的竞争性抑制;HLA Ⅱ类转基因小鼠模型的构建则是将鼠源β链敲除,转入HLA Ⅱ类基因。随着构建策略的优化,MHC转基因小鼠模型被应用于表位疫苗研发、肿瘤治疗及疾病遗传关联研究中,成为临床前试验的有力工具。本文对MHC转基因小鼠模型相关资料进行了总结,概述了MHC转基因小鼠模型的构建策略及其在疫苗研发、疾病治疗等方面的应用进展。

    Abstract:

    The major histocompatibility complex (MHC) is closely related to immune regulation, and not only has genetic polymorphisms, but also has species differences in MHC restriction. The construction of humanized MHC transgenic mouse models is an important strategy to break through the differences of MHC species and simulate the characteristics of human immune response. MHC transgenic mice are mainly divided into MHC I or MHC II. single transgenic mouse models and MHC I and MHC II double transgenic mouse models. At present, the strategy of knocking out H-2Kb and H-2Db or knocking out murine β2m is adopted to eliminate the competitive inhibition of HLA I molecules by endogenous H-2 class I molecules, and the construction of HLA II transgenic mouse model is to knock out the β strand of murine origin and transfer it to HLA II. class genes.With the optimization of construction strategies, MHC transgenic mouse models have been applied to epitope vaccine development, tumor treatment, and disease genetic association studies, becoming a powerful tool for preclinical trials. In this paper, we summarize the relevant data of MHC transgenic mouse models, and summarize the construction strategies of MHC transgenic mouse models and their application progress in vaccine development and disease treatment.

    参考文献
    [1] Ko HJ, Kim YJ. Antigen Delivery Systems: Past, Present, and Future [J]. Biomol Ther (Seoul). 2023;31(4):370-387.
    [2] Medhasi S, Chantratita N. Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections [J]. J Immunol Res, 2022;2022:9710376.
    [3] Basu A, Albert GK, Awshah S, et al. Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4+ Th1 Responses and Potential Use as a Cancer Vaccine [J]. Cancer Immunol Res, 2022;10(1):108-125.
    [4] 赖梦雨,周向梅,赵德明,等.实验动物病理学检测与实施成果[J].实验动物科学,2021,38(03):75-78.
    Lai MY, Zhou XM, Zhao DM, et al. Experimental animal pathology detection and implementation results [J]. Laboratory animal science, 2021,38(03):75-78.
    [6] [5]Snell GD, Russell E, Fekete E, et al. Resistance of various inbred strains of mice to tumor homoiotransplants, and its relation to the H-2 allele which each carries [J]. J Natl Cancer Inst, 1953;14(3):485-491.
    [7] [6]Claeys A, Merseburger P, Staut J, et al. Benchmark of tools for in silico prediction of MHC class I and class II genotypes from NGS data [J]. BMC Genomics, 2023;24(1):247.
    [8] [7]Kang JB, Shen AZ, Gurajala S, et al. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution [J]. Nat Genet, 2023;55(12):2255-2268.
    [9] [8]Hurley CK. Naming HLA diversity: A review of HLA nomenclature [J]. Hum Immunol, 2021;82(7):457-465.
    [10] [9]Duke-Cohan JS, Akitsu A, Mallis RJ, et al. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation [J]. Nature, 2023;613(7944):565-574.
    [11] [10]Ch''ng ACW, Lam P, Alassiri M, et al. Application of phage display for T-cell receptor discovery [J]. Biotechnol Adv, 2022;54:107870.
    [12] [11]Xia H, McMichael J, Becker-Hapak M, et al. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization [J]. Sci Immunol, 2023;8(82):eabg2200.
    [13] [12]Zhai Y, Chen L, Zhao Q, et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity [J]. Science, 2023;379(6637):eabg2482.
    [14] [13]Marzella DF, Crocioni G, Parizi FM, et al. The PANDORA Software for Anchor-Restrained Peptide:MHC Modeling [J]. Methods Mol Biol, 2023;2673:251-271.
    [15] [14]Marzella DF, Parizi FM, van Tilborg D, et al. PANDORA: A Fast, Anchor-Restrained Modelling Protocol for Peptide: MHC Complexes [J]. Front Immunol, 2022;13:878762.
    [16] [15]Kwok AJ, Mentzer A, Knight JC. Host genetics and infectious disease: new tools, insights and translational opportunities [J]. Nat Rev Genet, 2021;22(3):137-153.
    [17] [16]Kuiper JJ, Prinz JC, Stratikos E, et al. EULAR study group on ''MHC-I-opathy'': identifying disease-overarching mechanisms across disciplines and borders [J]. Ann Rheum Dis, 2023;82(7):887-896.
    [18] [17]Million KM, Lively CM. Trans-specific polymorphism and the convergent evolution of supertypes in major histocompatibility complex class II genes in darters (Etheostoma) [J]. Ecol Evol, 2022;12(1):e8485.
    [19] [18]Zhao X, Ma S, Wang B, et al. PGG.MHC: toward understanding the diversity of major histocompatibility complexes in human populations [J]. Nucleic Acids Res, 2023;51(D1):D1102-D1108.
    [20] [19]Tran JN, Sherwood KR, Mostafa A, et al. Novel alleles in the era of next-generation sequencing-based HLA typing calls for standardization and policy [J]. Front Genet, 2023;14:1282834.
    [21] [20]Zhao S, Chen N, He Y, et al. The novel HLA-C allele, C*03:538 was identified by next-generation sequencing [J]. HLA, 2022;100(4):378-379.
    [22] [21]Jacob V, Farce F, Kaveri R, et al. Characterization of the novel HLA-C*04:438 allele by next generation sequencing [J]. HLA, 2022;99(1):53-54.
    [23] [22]Gatouillat G, Tabary T, Tonye-Libyh M, et al. Characterization of the novel HLA-C*05:255 allele by next-generation sequencing [J]. HLA, 2022;99(1):55-56.
    [24] [23]Loginova M, Makhova O, Kutyavina S, et al. Two new HLA alleles, HLA-B*15:583 and DRB1*11:279, detected in individuals from the Irkutsk region [J]. HLA, 2021;97(5):458-459.
    [25] [24]Barker DJ, Maccari G, Georgiou X, et al. The IPD-IMGT/HLA Database [J]. Nucleic Acids Res, 2023;51(D1):D1053-D1060.
    [26] [25]Ravindranath MH, Ravindranath NM, Amato-Menker CJ, et al. Antibodies for β2-Microglobulin and the Heavy Chains of HLA-E, HLA-F, and HLA-G Reflect the HLA-Variants on Activated Immune Cells and Phases of Disease Progression in Rheumatoid Arthritis Patients under Treatment [J]. Antibodies (Basel), 2023;12(2):26.
    [27] [26]李日许,叶晓彤,陈健钊,等.风湿性关节炎胶原诱导型与佐剂诱导型大鼠模型的建立与对比分析[J].实验动物科学, 2023, 40(02): 49-60.
    Li RX, Ye XT, Chen JZ, et al. Establishment and Comparative Analysis of Collagen-Induced Arthritis( CIA) and Adjuvant-Induced Arthritis( AA) Rat Models of Rheumatoid Arthritis [J]. Laboratory animal science, 2023, 40(02): 49-60.
    [29] [27]Singh J, Ronsard L, Pandey M, et al. Molecular and Genetic Characterization of Natural Variants of HIV-1 Nef Gene from North India and its Functional Implication in Down-Regulation of MHC-I and CD-4 [J]. Curr HIV Res, 2021;19(2):172-187.
    [30] [28]Naito T, Okada Y. HLA imputation and its application to genetic and molecular fine-mapping of the MHC region in autoimmune diseases [J]. Semin Immunopathol, 2022;44(1):15-28.
    [31] [29]Rica?o-Ponce I, Peeters T, Matzaraki V, et al. Impact of Human Genetic Variation on C-Reactive Protein Concentrations and Acute Appendicitis [J]. Front Immunol, 2022;13:862742.
    [32] [30]Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus [J]. Semin Immunopathol, 2022;44(1):29-46.
    [33] [31]Postigo-Fernandez J, Firdessa-Fite R, Creusot RJ. Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes [J]. Proc Natl Acad Sci U S A, 2022;119(15):e2110987119.
    [34] [32]Xiong Y, Cai M, Xu Y, et al. Joint together: The etiology and pathogenesis of ankylosing spondylitis [J]. Front Immunol, 2022;13:996103.
    [35] [33]Rezaieyazdi Z, Rezaeian A, Khodashahi M. Serum Level of Soluble Human Leukocyte Antigen G in Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis [J]. Curr Rheumatol Rev, 2023;19(1):64-71.
    [36] [34]Hu FY, Wu W, Liu Q, et al. β2-Microglobulin is a Novel and Reliable Biomarker for Predicting Ischemic Stroke Recurrence: A Prospective Cohort Study [J]. Front Pharmacol, 2022;13:916769.
    [37] [35]Takeno M. The association of Beh?et''s syndrome with HLA-B51 as understood in 2021 [J]. Curr Opin Rheumatol, 2022;34(1):4-9.
    [38] [36]王凤娟,于小亚,丁瑜,等.精神分裂症动物模型的研究进展[J].实验动物科学, 2021, 38(05): 70-74.
    Wang FJ, Yu XY, Ding Y, et al. Research progress in animal models of schizophrenia [J]. Laboratory animal science, 2021, 38(05): 70-74.
    [40] [37]Richards AL, Cardno A, Harold G, et al. Genetic Liabilities Differentiating Bipolar Disorder, Schizophrenia, and Major Depressive Disorder, and Phenotypic Heterogeneity in Bipolar Disorder [J]. JAMA Psychiatry, 2022;79(10):1032-1039.
    [41] [38]Allardyce J, Leonenko G, Hamshere M, et al. Association Between Schizophrenia-Related Polygenic Liability and the Occurrence and Level of Mood-Incongruent Psychotic Symptoms in Bipolar Disorder [J]. JAMA Psychiatry, 2018;75(1):28-35.
    [42] [39]吕海燕,侯广玉,朱梅.MPTP 致帕金森病动物模型的研究进展[J].实验动物科学, 2022, 39(04): 64-68.
    Lv HY, Hou GY, Zhu M. Research progress in animal models of Parkinson''s disease caused by MPTP [J]. Laboratory animal science, 2022, 39(04): 64-68.
    [44] [40]Naito T, Satake W, Ogawa K, et al. Trans-Ethnic Fine-Mapping of the Major Histocompatibility Complex Region Linked to Parkinson''s Disease [J]. Mov Disord, 2021;36(8):1805-1814.
    [45] [41]Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson''s disease? [J]. Ageing Res Rev, 2022;79:101648.
    [46] [42]Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson''s disease [J]. Nat Genet, 2010;42(9):781-785.
    [47] [43]Kung PJ, Elsayed I, Reyes-Pérez P, et al. Immunogenetic Determinants of Parkinson''s Disease Etiology [J]. J Parkinsons Dis, 2022;12(s1):S13-S27.
    [48] [44]Khan A, Shin JY, So MK, et al. Characterization of HLA-A*33:03 epitopes via immunoprecipitation and LC-MS/MS [J]. Proteomics, 2022;22(1-2):e2100171.
    [49] [45]Tanuwidjaya E, Schittenhelm RB, Faridi P. Soluble HLA peptidome: A new resource for cancer biomarkers [J]. Front Oncol, 2022;12:1069635.
    [50] [46]尚艳姣,周小军,袁征,等.单核苷酸多态性在近交系小鼠遗传检测方面的研究进展[J].实验动物科学, 2022, 39(04): 69-73.
    Shang YJ, Zhou XJ, Yuan Z, et al. Research progress on single nucleotide polymorphisms in the genetic detection of inbred mice [J]. Laboratory animal science, 2022, 39(04): 69-73.
    [52] [47]Kievits F, Ivanyi P, Krimpenfort P, et al. HLA-restricted recognition of viral antigens in HLA transgenic mice [J]. Nature, 1987;329(6138):447-449.
    [53] [48]Kalinke U, Arnold B, H?mmerling GJ. Strong xenogeneic HLA response in transgenic mice after introducing an alpha 3 domain into HLA B27 [J]. Nature, 1990;348(6302):642-644.
    [54] [49]Jin D, Loh KL, Shamekhi T, et al. Engineering Cell Lines for Specific Human Leukocyte Antigen Presentation [J]. Methods Mol Biol, 2023;2691:351-369.
    [55] [50]Pascolo S, Bervas N, Ure JM, et al. HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice [J]. J Exp Med, 1997;185(12):2043-2051.
    [56] [51]Bix M, Raulet D. Functionally conformed free class I heavy chains exist on the surface of beta 2 microglobulin negative cells [J]. J Exp Med, 1992;176(3):829-834.
    [57] [52]Chiuppesi F, Nguyen J, Park S, et al. Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice [J]. J Virol. 2018;92(19):e01012-18.
    [58] [53]Fugger L, Michie SA, Rulifson I, et al. Expression of HLA-DR4 and human CD4 transgenes in mice determines the variable region beta-chain T-cell repertoire and mediates an HLA-DR-restricted immune response [J]. Proc Natl Acad Sci U S A, 1994;91(13):6151-6155.
    [59] [54]Pajot A, Pancré V, Fazilleau N, et al. Comparison of HLA-DR1-restricted T cell response induced in HLA-DR1 transgenic mice deficient for murine MHC class II and HLA-DR1 transgenic mice expressing endogenous murine MHC class II molecules [J]. Int Immunol, 2004;16(9):1275-1282.
    [60] [55]李丹.人MHC双转基因小鼠模型制备及埃博拉病毒核蛋白MHC限制性表位研究[D].北京:军事科学院; 2018.
    Li D. The Establishment of Humanized MHC Transgenic Mice and Reseach on the MHC-restricted epitopes in the EBOV-NP protein [D]. Beijing: Academy of Military Medical Sciences; 2018.
    [62] [56]Ballhausen A, Przybilla MJ, Jendrusch M, et al. The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution [J]. Nat Commun, 2020;11(1):4740.
    [63] [57]Castelli FA, Buhot C, Sanson A, et al. HLA-DP4, the most frequent HLA II molecule, defines a new supertype of peptide-binding specificity [J]. J Immunol, 2002;169(12):6928-6934.
    [64] [58]Ciacchi L, van de Garde MDB, Ladell K, et al. CD4+ T cell-mediated recognition of a conserved cholesterol-dependent cytolysin epitope generates broad antibacterial immunity [J]. Immunity, 2023;56(5):1082-1097.
    [65] [59]Li F, Zhu MM, Niu BW, et al. Generation and expression analysis of BAC humanized mice carrying HLA-DP401 haplotype [J]. Animal Model Exp Med, 2021;4(2):116-128.
    Ru Z, Xiao W, Pajot A, et al. Development of a humanized HLA-A2.1/DP4 transgenic mouse model and the use of this model to map HLA-DP4-restricted epitopes of HBV envelope protein [J]. PLoS One, 2012;7(3):e32247.
    曾扬.人MHC转基因小鼠模型建立及其应用基础研究[D].北京:中国人民解放军军事医学科学院;2016.
    Zeng Y. The Establishment and Identification of Humanized MHC Transgenic Mice and Basic Application Research Abstract [D]. Beijing: Academy of Military Medical Sciences; 2016.
    [69] [62]Shao X, Hua S, Feng T, et al. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion [J]. Int J Mol Sci, 2022;23(19):11789.
    [70] [63]Hattori T, Maso L, Araki KY, et al. Creating MHC-Restricted Neoantigens with Covalent Inhibitors That Can Be Targeted by Immune Therapy [J]. Cancer Discov, 2023;13(1):132-145.
    [71] [64]Wu X, Li T, Jiang R, et al. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects [J]. Mol Cancer, 2023;22(1):194.
    [72] [65]Wen PY, Reardon DA, Armstrong TS, et al. A Randomized Double-Blind Placebo-Controlled Phase II Trial of Dendritic Cell Vaccine ICT-107 in Newly Diagnosed Patients with Glioblastoma [J]. Clin Cancer Res, 2019;25(19):5799-5807.
    [73] [66]Foos G, Blazeska N, Nielsen M, et al. A meta-analysis of epitopes in prostate-specific antigens identifies opportunities and knowledge gaps [J]. Hum Immunol, 2023;84(11):578-589.
    [74] [67]Horiuchi Y, Takagi A, Uchida T, et al. Targeting cryptic epitope with modified antigen coupled to the surface of liposomes induces strong antitumor CD8 T-cell immune responses in vivo [J]. Oncol Rep, 2015;34(6):2827-2836.
    [75] [68]Lebreton F, Hanna R, Wassmer CH, et al. Mechanisms of Immunomodulation and Cytoprotection Conferred to Pancreatic Islet by Human Amniotic Epithelial Cells [J]. Stem Cell Rev Rep, 2022;18(1):346-359.
    [76] [69]Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice [J]. Int J Mol Sci, 2023;24(9):8060.
    [77] [70]Brentville VA, Symonds P, Cook KW, et al. T cell repertoire to citrullinated self-peptides in healthy humans is not confined to the HLA-DR SE alleles; Targeting of citrullinated self-peptides presented by HLA-DP4 for tumour therapy [J]. Oncoimmunology, 2019;8(5):e1576490.
    [78] [71]Garrido F. MHC/HLA Class I Loss in Cancer Cells [J]. Adv Exp Med Biol, 2019;1151:15-78.
    [79] [72]Kaur K, Chen PC, Ko MW, et al. The Role of Checkpoint Inhibitors in Autoimmune Diseases: Similarities and Differences Compared with Cancer [J]. Crit Rev Immunol, 2022;42(3):23-36.
    [80] [73]Ravindranath MH, Ravindranath NM, Selvan SR, et al. Four Faces of Cell-Surface HLA Class-I: Their Antigenic and Immunogenic Divergence Generating Novel Targets for Vaccines [J]. Vaccines (Basel), 2022;10(2):339.
    [81] [74]Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade [J]. Cell, 2021;184(21):5309-5337.
    [82] [75]张静,张赞,赵磊,等.CD40免疫检查点人源化小鼠的制备及在抗体药物研究中的应用[J].实验动物科学, 2021, 38(03): 10-16+28.
    Zhang J, Zhang Z, Zhao L, et al. Preparation of CD40 immune checkpoint humanized mice and its application in antibody drug research [J]. Laboratory animal science, 2021, 38(03): 10-16+28.
    [84] [76]Arjomandnejad M, Kopec AL, Keeler AM. CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications [J]. Biomedicines, 2022;10(2):287.
    [85] [77]谢明阳,孙报增,马思婕,等.汉滩病毒Gc的细胞免疫反应性评估和验证[J].陆军军医大学学报,2023,45(19):2007-2017.
    Xie MY, Sun BZ, Ma SJ. et al. Evaluation and validation on cellular immunoreactivity of Hantaan virus Gc [J]. Journal of Army Medical University, 2023, 45(19): 2007-2017.
    [87] [78]Kalita P, Tripathi T. Methodological advances in the design of peptide-based vaccines [J]. Drug Discov Today, 2022;27(5):1367-1380.
    [88] [79]Pogostin BH, Yu MH, Azares AR, et al. Multidomain peptide hydrogel adjuvants elicit strong bias towards humoral immunity [J]. Biomater Sci, 2022;10(21):6217-6229.
    [89] [80]薛卫.新型冠状病毒人MHC限制性多表位mRNA疫苗基础研究[D].云南:昆明理工大学;2023.
    Xue W. Basic research on HLA-restricted multi-epitope mRNA vaccines for SARS-CoV-2 [D]. Yunnan: Kunming university of science and technology; 2023
    [91] [81]Kruse S, Büchler M, Uhl P, et al. Therapeutic vaccination using minimal HPV16 epitopes in a novel MHC-humanized murine HPV tumor model [J]. Oncoimmunology, 2018;8(1):e1524694.
    [92] [82]Choudhury RH, Symonds P, Paston SJ, et al. PAD-2-mediated citrullination of nucleophosmin provides an effective target for tumor immunotherapy [J]. J Immunother Cancer. 2022;10(2):e003526.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-29
  • 最后修改日期:2024-04-02
  • 录用日期:2024-04-11
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭