芪石肾舒胶囊对早期糖尿病肾病小鼠肾纤维化的作用机制研究
作者:
作者单位:

1.西南医科大学中西医结合学院;2.西南医科大学附属中医医院;3.乐山市中医医院

基金项目:

四川省科技计划项目;四川省中医药管理局项目


Effect and Mechanism of Qishishenshu Capsule on Renal Fibrosis in Mouse Early Diabetic Nephropathy
Author:
Affiliation:

1.College of Integrated Traditional Chinese and Western Medicine,Southwest Medical University;2.Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University;3.Leshan Hospital of Traditional Chinese Medicine

Fund Project:

Science and Technology Program of Sichuan Province; Sichuan Provincial Administration of Traditional Chinese Medicine Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【摘要】目的 探讨芪石肾舒胶囊对早期糖尿病肾病小鼠肾纤维化的治疗作用和机制。 方法 采用多次注射链脲佐菌素建立糖尿病肾病小鼠模型。小鼠随机分为正常组、模型组和芪石组(0.9 g/kg/d),每组8只,连续灌胃4周,监测每周空腹血糖。4周后,检测尿微量白蛋白肌酐比、血肌酐和血尿素氮含量;苏木精-伊红染色、过碘酸雪夫染色和天狼星红染色观察肾脏病理变化情况;实时荧光定量逆转录聚合酶链式反应检测纤维连接蛋白、Ⅰ型胶原蛋白α1及α-平滑肌肌动蛋白的信使核糖核酸(mRNA)表达水平;免疫组化和免疫蛋白印迹法检测纤维连接蛋白、Ⅰ型胶原蛋白、Ⅲ型胶原蛋白、α-平滑肌肌动蛋白、足突蛋白、肾病蛋白及转化生长因子-β1/SMAD家族成员2/3 (TGF-β1/Smad2/3)通路相关蛋白含量。 结果 与正常组相比,模型组小鼠空腹血糖和尿微量白蛋白肌酐比水平升高(P<0.001);肾组织出现系膜增生、基底膜增厚和胶原沉积;纤维连接蛋白、Ⅰ型胶原蛋白α1及α-平滑肌肌动蛋白的mRNA水平升高(P<0.05);足突蛋白和肾病蛋白水平下降(P<0.05),纤维连接蛋白、Ⅰ型胶原蛋白、Ⅲ型胶原蛋白、α-平滑肌肌动蛋白、足突蛋白、肾病蛋白及TGF-β1/Smad2/3通路蛋白水平升高(P<0.05);与模型组相比,芪石组尿微量白蛋白肌酐比水平降低(P<0.05),肾脏病理损伤有所缓解;纤维连接蛋白、Ⅰ型胶原蛋白α1及α-平滑肌肌动蛋白的mRNA水平下降(P<0.05),足突蛋白和肾病蛋白水平升高(P<0.05),纤维连接蛋白、Ⅰ型胶原蛋白、Ⅲ型胶原蛋白、α-平滑肌肌动蛋白及TGF-β1/Smad2/3通路蛋白水平均降低(P<0.05)。 结论 芪石肾舒胶囊可改善糖尿病肾病小鼠肾纤维化,其机制可能与抑制TGF-β1/Smad2/3信号通路有关。

    Abstract:

    【Abstract】Objective To investigate the therapeutic effect and underlying mechanism of Qishishenshu capsule on renal fibrosis in mice with early diabetic nephropathy (DN). Methods DN mouse model was established by multiple injection of streptozotocin (STZ). The mice were randomly divided into the normal group (NC), model group (DN) and Qishi group (QS)(0.9 g/kg/d), 8 mice in each group, gavaged continuously for 4 weeks, and fasting blood glucose (FBG) was measured weekly. 4 weeks later, urinary microalbumin creatinine ratio (UACR), serum creatinine (SCr) and blood urea nitrogen (BUN) were measured. Hematoxylin-eosin staining (HE staining), periodic acid-Schiff staining (PAS staining) and Sirius red staining were used to analyze renal pathological changes. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to detect the Message RNA (mRNA) levels of fibronectin (FN), collagen type I alpha 1 (Col1a1), and α-smooth muscle actin (α-SMA). Immunohistochemistry (IHC) and Western blot (WB) were performed to detect FN, collagen type I (Collagen I), collagen type III (Collagen III), α-SMA, Podocin, Nephrin and transforming growth factor-β1/SMAD family member2/3 (TGF-β1/Smad2/3) pathway-related proteins. Results Compared with the NC group, mice in the DN group showed significantly higher levels of FBG and UACR (P<0.001). Mesangial hyperplasia, basement membrane thickening and collagen deposition occurred in renal tissue. The mRNA levels of FN, Col1a1 and α-SMA were increased (P<0.05). Protein levels of Podocin and Nephrin were decreased (P<0.05). The levels of FN, Collagen I, Collagen III, α-SMA and TGF-β1/Smad2/3 pathway protein were increased (P<0.05). Compared with the DN group, the level of UACR in QS group was decreased (P<0.05), and renal pathological injury was alleviated. The mRNA levels of FN, Collagen1 and α-SMA were attenuated (P<0.05). The protein levels of Podocin and Nephrin were elevated (P<0.05). Protein levels of FN, Collagen I, Collagen III, α-SMA and TGF-β1/Smad2/3 pathway protein were also decreased (P<0.05). Conclusions Qishishenshu Capsules improved renal fibrosis in DN mice probably through the inhibition of TGF-β1/Smad2/3 signaling pathway.

    参考文献
    [1] GUPTA S, DOMINGUEZ M, GOLESTANEH L. Diabetic Kidney Disease: An Update [J]. Med Clin North Am, 2023, 107(4): 689-705.
    [2] HOOGEVEEN E K. The Epidemiology of Diabetic Kidney Disease [J]. Kidney and Dialysis, 2022, 2(3): 433-42.
    [3] YANG C, GAO B, ZHAO X, et al. Executive summary for China Kidney Disease Network (CK-NET) 2016 Annual Data Report [J]. Kidney Int, 2020, 98(6): 1419-23.
    [4] SELBY N M, TAAL M W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines [J]. Diabetes Obes Metab, 2020, 22 Suppl 1(3-15.
    [5] TERVAERT T W, MOOYAART A L, AMANN K, et al. Pathologic classification of diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(4): 556-63.
    [6] MOHANDES S, DOKE T, HU H, et al. Molecular pathways that drive diabetic kidney disease [J]. J Clin Invest, 2023, 133(4):
    [7] EVANS K, PYART R, STEENKAMP R, et al. UK Renal Registry 20th Annual Report: Introduction [J]. Nephron, 2018, 139 Suppl 1(1-12.
    [8] RITZ E, RYCHLíK I, LOCATELLI F, et al. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions [J]. Am J Kidney Dis, 1999, 34(5): 795-808.
    [9] WANG L, WANG H L, LIU T T, et al. TGF-Beta as a Master Regulator of Diabetic Nephropathy [J]. Int J Mol Sci, 2021, 22(15):
    [10] SAMSU N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment [J]. Biomed Res Int, 2021, 2021(1497449.
    [11] HATHAWAY C K, GASIM A M, GRANT R, et al. Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice [J]. Proc Natl Acad Sci U S A, 2015, 112(18): 5815-5820.
    [12] ZENG L F, XIAO Y, SUN L. A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy [J]. Adv Exp Med Biol, 2019, 1165(49-79.
    [13] LAN H Y. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation [J]. Int J Biol Sci, 2011, 7(7): 1056-67.
    [14] 赵长英, 孙楠, 杨洁珂, et al. 肾舒胶囊对糖尿病肾病大鼠肾脏mTOR、beclin-1自噬通路的表达及意义 [J]. 广西中医药, 2019, 42(06): 55-8.
    [15] 赵长英, 杨洁珂, 孙楠, et al. 肾舒胶囊通过AKT/NF-κB信号通路改善大鼠糖尿病肾病纤维化作用研究 [J]. 实用中医内科杂志, 2020, 34(10): 70-4+111.
    [16] LI A, YI B, HAN H, et al. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway [J]. Autophagy, 2022, 18(4): 877-90.
    [17] 李启富, 胡金波. 纤维化与糖尿病肾病 [J]. 中华糖尿病杂志, 2015, 11): 657-60.
    [18] HE X, ZHANG T, TOLOSA M, et al. A new, easily generated mouse model of diabetic kidney fibrosis [J]. Sci Rep, 2019, 9(1): 12549.
    [19] GILBERT R E, COOPER M E. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? [J]. Kidney Int, 1999, 56(5): 1627-37.
    [20] 裴文丽, 史晓伟, 连琯, et al. 中医药防治糖尿病肾病的作用机制 [J]. 实用中医内科杂志, 1-7.
    [21] 闫宗保, 王仃仃, 李世鹏, et al. 糖尿病肾病的中医药理论研究进展 [J]. 光明中医, 2023, 38(20): 4069-72.
    [22] SEO E, KANG H, OH Y S, et al. Psoralea corylifolia L. Seed Extract Attenuates Diabetic Nephropathy by Inhibiting Renal Fibrosis and Apoptosis in Streptozotocin-Induced Diabetic Mice [J]. Nutrients, 2017, 9(8):
    [23] SHU A, DU Q, CHEN J, et al. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway [J]. Chem Biol Interact, 2021, 348(109625.
    [24] GUO H, WANG Y, ZHANG X, et al. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKalpha-regulated autophagy induction in streptozotocin-induced diabetic nephropathy [J]. Sci Rep, 2017, 7(1): 6852.
    [25] AHANGARPOUR A, OROOJAN A A, KHORSANDI L, et al. Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice [J]. Iran J Basic Med Sci, 2019, 22(12): 1424-31.
    [26] AHANGARPOUR A, OROOJAN A A, KHORSANDI L, et al. Anti-oxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide induced diabetic nephropathy in type 2 diabetic male mice [J]. Iran J Basic Med Sci, 2023, 26(8): 851-3.
    [27] QI W, CHEN X, ZHANG Y, et al. High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism [J]. Nephrol Dial Transplant, 2007, 22(11): 3147-53.
    [28] ABOURASHED E A. Bioavailability of Plant-Derived Antioxidants [J]. Antioxidants (Basel), 2013, 2(4): 309-25.
    [29] GU X, YANG B. Methods for Assessment of the Glomerular Filtration Rate in Laboratory Animals [J]. Kidney Dis (Basel), 2022, 8(5): 381-91.
    [30] FALK R J, SCHEINMAN J I, MAUER S M, et al. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy [J]. Diabetes, 1983, 32 Suppl 2(34-9.
    [31] 唐小玲. 基于JAK/STAT/SOCS信号通路研究芪石肾舒胶囊对糖尿病肾病大鼠的作用及机制 [D]; 西南医科大学, 2020.
    [32] SUN N, YANG N, ZHOU J, et al. Yiqi Qingre Xiaozheng formula protects against diabetic nephropathy by restoring autophagy in mice [J]. Journal of Traditional Chinese Medical Sciences, 2023, 10(3): 310-20.
    [33] LAN H Y. Transforming growth factor-beta/Smad signalling in diabetic nephropathy [J]. Clin Exp Pharmacol Physiol, 2012, 39(8): 731-8.
    [34] WU W, WANG Y, LI H, et al. Buyang Huanwu Decoction protects against STZ-induced diabetic nephropathy by inhibiting TGF-β/Smad3 signaling-mediated renal fibrosis and inflammation [J]. Chin Med, 2021, 16(1): 118.
    [35] DING H, CHEN J, QIN J, et al. TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells [J]. Mol Med, 2021, 27(1): 22.
    [36] LOEFFLER I, LIEBISCH M, ALLERT S, et al. FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy [J]. Cell Tissue Res, 2018, 372(1): 115-33
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:179
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-01-05
  • 最后修改日期:2024-05-12
  • 录用日期:2024-08-08
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭