线粒体损伤在炎症性肠病中的研究进展
作者:
作者单位:

广东药科大学,广东省药物生物活性物质重点实验室

基金项目:

2023年广东省自然科学基金-面上项目(2023A1515011931)


Research progress on Mitochondrial Damage in Inflammatory Bowel Disease
Author:
Affiliation:

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,Guangdong Pharmaceutical University

Fund Project:

2023 Natural Science Foundation of Guangdong Province - Top Project (2023A1515011931)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • | | | |
  • 文章评论
    摘要:

    炎症性肠病(inflammatory bowel disease, IBD)是一种严重危害人类健康的慢性复发性肠道炎症疾病。其发病机制尚不明确,可能涉及遗传、免疫和环境等多种因素。近年来,越来越多的研究表明线粒体损伤与功能异常在IBD的发生发展中发挥着重要作用。本综述对炎症性肠病中线粒体损伤的相关研究进行了全面回顾和梳理,重点探讨线粒体氧化应激损伤、自噬功能障碍、动力学紊乱、呼吸功能缺陷对IBD的影响,尝试寻找其潜在治疗靶点,旨在为IBD的科学防治提供新依据。

    Abstract:

    Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract that poses a significant threat to human health. The pathogenesis of IBD remains unclear and is believed to involve various factors such as genetics, immune dysregulation, and environmental triggers. In recent years, increasing evidence has highlighted the role of mitochondrial damage and dysfunction in the development of IBD. This review provides a comprehensive review and overview of studies related to mitochondrial damage in inflammatory bowel disease, focusing on the effects of mitochondrial oxidative stress damage, autophagy dysfunction, kinetic disturbances, and respiratory defects on IBD. The aim is to identify potential therapeutic targets and provide new insights for the scientific prevention and treatment of IBD.

    参考文献
    [1] Nambu R, Muise A M. Advanced Understanding of Monogenic Inflammatory Bowel Disease[J]. Front Pediatr, 2020, 8: 618918.
    [2] Yalchin M, Baker A M, Graham T A, et al. Predicting Colorectal Cancer Occurrence in IBD[J]. Cancers (Basel), 2021, 13(12).
    [3] Engel K, Homsi M, Suzuki R, et al. Newly Diagnosed Patients with Inflammatory Bowel Disease: The Relationship Between Perceived Psychological Support, Health-Related Quality of Life, and Disease Activity[J]. Health Equity, 2021, 5(1): 42-48.
    [4] 韩剑秋, 李毅, 朱维铭. 炎症性肠病外科治疗最新进展——手术方式和技术[J]. 中国医学前沿杂志(电子版), 2021, 13(07): 22-25. Han JQ, Li Y, Zhu WM. Recent advances in the surgical treatment of inflammatory bowel disease - surgical approaches and techniques[J]. Chinese Journal of Frontiers of Medicine (Electronic Edition), 2021, 13(07): 22-25.
    [5] Mizoguchi E, Low D, Ezaki Y, et al. Recent updates on the basic mechanisms and pathogenesis of inflammatory bowel diseases in experimental animal models[J]. Intest Res, 2020, 18(2): 151-167.
    [6] Haberman Y, Karns R, Dexheimer P J, et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response[J]. Nat Commun, 2019, 10(1): 38.
    [7] 马志华, 阿迪力江·喀日, 阿布来提·阿不都哈尔. 上皮细胞能量代谢对炎症性肠病线粒体的影响[J]. 中国中西医结合消化杂志, 2021, 29(7): 501-506. Ma ZH, Adilijiang KR, Ablaiti ABDUHAR. Effect of epithelial cell energy metabolism on mitochondria in inflammatory bowel disease[J]. Chinese Journal of Integrative Medicine and Digestion, 2021, 29(7): 501-506.
    [8] 张朦朦. 线粒体功能异常在老年溃疡性结肠炎中的作用与机制研究[D]. 北京: 北京协和医学院, 2022. Zhang MM. Role and Mechanisms of Mitochondrial Dysfunction in Elderly Ulcerative Colitis[D]. Beijing: Peking Union Medical College, 2022.
    [9] Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(7): 1068-1078.
    [10] 唐雪莹, 沈月全, 廖军, 等. 线粒体内膜膜蛋白结构研究的新方法及应用[J]. 中国基础科学, 2018, 20(01): 58-62. Tang XY, Shen YQ, Liao J, et al. Novel Methods and Applications in the Study of Mitochondrial Inner Membrane Protein Structures[J]. Chinese Journal of Basic Science, 2018, 20(01): 58-62.
    [11] Wang Y, Palmfeldt J, Gregersen N, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex[J]. J Biol Chem, 2019, 294(33): 12380-12391.
    [12] Sanchez-Contreras M, Kennedy S R. The Complicated Nature of Somatic mtDNA Mutations in Aging[J]. Front Aging, 2022, 2.
    [13] Almansa-Ordonez A, Bellido R, Vassena R, et al. Oxidative Stress in Reproduction: A Mitochondrial Perspective[J]. Biology (Basel), 2020, 9(9).
    [14] Juan C A, Pérez De La Lastra J M, Plou F J, et al. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies[J]. Int J Mol Sci, 2021, 22(9).
    [15] Halliwell B, Adhikary A, Dingfelder M, et al. Hydroxyl radical is a significant player in oxidative DNA damage in vivo[J]. Chem Soc Rev, 2021, 50(15): 8355-8360.
    [16] Li K, Van Delft M F, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease[J]. Embo j, 2021, 40(14): e107341.
    [17] Ma K, Chen G, Li W, et al. Mitophagy, Mitochondrial Homeostasis, and Cell Fate[J]. Front Cell Dev Biol, 2020, 8: 467.
    [18] 张晓放, 李思琦, 张强, 等. Parkin介导的线粒体自噬及细胞器互作机制[J]. 生物化学与生物物理进展, 2021, 48(11): 1253-1259. Zhang XF, Li SQ, Zhang Q, et al. Parkin-Mediated Mitophagy and Organelle Crosstalk Mechanisms[J]. Progress in Biochemistry and Biophysics, 2021, 48(11): 1253-1259.
    [19] Abudu Y P, Shrestha B K, Zhang W, et al. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components[J]. J Cell Biol, 2021, 220(8).
    [20] Kageyama S, Gudmundsson S R, Sou Y S, et al. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response[J]. Nat Commun, 2021, 12(1): 16.
    [21] Xie J H, Li Y Y, Jin J. The essential functions of mitochondrial dynamics in immune cells[J]. Cell Mol Immunol, 2020, 17(7): 712-721.
    [22] Madan S, Uttekar B, Chowdhary S, et al. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease[J]. Front Cell Dev Biol, 2021, 9: 781933.
    [23] Gao S, Hu J. Mitochondrial Fusion: The Machineries In and Out[J]. Trends Cell Biol, 2021, 31(1): 62-74.
    [24] Wang S, Chen Y, Li X, et al. Emerging role of transcription factor EB in mitochondrial quality control[J]. Biomed Pharmacother, 2020, 128: 110272.
    [25] Losón O C, Song Z, Chen H, et al. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission[J]. Mol Biol Cell, 2013, 24(5): 659-667.
    [26] Yu R, Lendahl U, Nistér M, et al. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges[J]. Front Endocrinol (Lausanne), 2020, 11: 374.
    [27] Wang S, Tan J, Miao Y, et al. Mitochondrial Dynamics, Mitophagy, and Mitochondria-Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia[J]. Front Cell Dev Biol, 2022, 10: 848214.
    [28] Moon S J, Dong W, Stephanopoulos G N, et al. Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress[J]. Bioeng Transl Med, 2020, 5(3): e10184.
    [29] Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020, 37: 101674.
    [30] Vona R, Pallotta L, Cappelletti M, et al. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders[J]. Antioxidants (Basel), 2021, 10(2).
    [31] 李杰, 谢海玲, 李昭辉, 等. 氧化应激在炎症性肠病和结肠炎相关结直肠癌疾病中的研究进展[J]. 胃肠病学和肝病学杂志, 2022, (007): 031. Li J, Xie HL, Li ZH, et al. Research Progress on Oxidative Stress in Inflammatory Bowel Disease and Colitis-Associated Colorectal Cancer[J]. Journal of Gastroenterology and Hepatology, 2022, (007): 031.
    [32] Zhang Y, Wong H S. Are mitochondria the main contributor of reactive oxygen species in cells?[J]. J Exp Biol, 2021, 224(Pt 5).
    [33] Bhattacharyya A, Chattopadhyay R, Mitra S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiol Rev, 2014, 94(2): 329-354.
    [34] Randhawa P K, Singh K, Singh N, et al. A review on chemical-induced inflammatory bowel disease models in rodents[J]. Korean J Physiol Pharmacol, 2014, 18(4): 279-288.
    [35] Kim J S, Kim Y R, Jang S, et al. Mito-TIPTP Increases Mitochondrial Function by Repressing the Rubicon-p22phox Interaction in Colitis-Induced Mice[J]. Antioxidants (Basel), 2021, 10(12).
    [36] Dashdorj A, Jyothi K R, Lim S, et al. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines[J]. BMC Med, 2013, 11: 178.
    [37] Alula K M, Jackson D N, Smith A D, et al. Targeting Mitochondrial Damage as a Therapeutic for Ileal Crohn''s Disease[J]. Cells, 2021, 10(6).
    [38] Shi J, Wang W, Sun S, et al. Advanced oxidation protein products induce Paneth cells defects by endoplasmic reticulum stress in Crohn''s disease[J]. iScience, 2023, 26(8): 107312.
    [39] Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases[J]. Autophagy, 2020, 16(1): 3-17.
    [40] Singh S B, Ornatowski W, Vergne I, et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria[J]. Nat Cell Biol, 2010, 12(12): 1154-1165.
    [41] Matsuzawa-Ishimoto Y, Shono Y, Gomez L E, et al. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium[J]. J Exp Med, 2017, 214(12): 3687-3705.
    [42] Vincent G, Novak E A, Siow V S, et al. Nix-Mediated Mitophagy Modulates Mitochondrial Damage During Intestinal Inflammation[J]. Antioxid Redox Signal, 2020, 33(1): 1-19.
    [43] Theiss A L, Jenkins A K, Okoro N I, et al. Prohibitin inhibits tumor necrosis factor alpha-induced nuclear factor-kappa B nuclear translocation via the novel mechanism of decreasing importin alpha3 expression[J]. Mol Biol Cell, 2009, 20(20): 4412-4423.
    [44] Jackson D N, Panopoulos M, Neumann W L, et al. Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis[J]. Gut, 2020, 69(11): 1928-1938.
    [45] Liang H, Zhang F, Wang W, et al. Heat Shock Transcription Factor 2 Promotes Mitophagy of Intestinal Epithelial Cells Through PARL/PINK1/Parkin Pathway in Ulcerative Colitis[J]. Front Pharmacol, 2022, 13: 893426.
    [46] Novak E A, Mollen K P. Mitochondrial dysfunction in inflammatory bowel disease[J]. Front Cell Dev Biol, 2015, 3: 62.
    [47] Impellizzeri D, Siracusa R, Cordaro M, et al. Therapeutic potential of dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice by targeting IL-1β and IL-18[J]. Biochem Pharmacol, 2018, 155: 150-161.
    [48] K?os P, Dabravolski S A. The Role of Mitochondria Dysfunction in Inflammatory Bowel Diseases and Colorectal Cancer[J]. Int J Mol Sci, 2021, 22(21).
    [49] Chojnacki A K, Navaneetha Krishnan S, Jijon H, et al. Tissue imaging reveals disruption of epithelial mitochondrial networks and loss of mitochondria-associated cytochrome-C in inflamed human and murine colon[J]. Mitochondrion, 2023, 68: 44-59.
    [50] Qi X, Qvit N, Su Y C, et al. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity[J]. J Cell Sci, 2013, 126(Pt 3): 789-802.
    [51] Mancini N L, Goudie L, Xu W, et al. Perturbed Mitochondrial Dynamics Is a Novel Feature of Colitis That Can Be Targeted to Lessen Disease[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 287-307.
    [52] Sifroni K G, Damiani C R, Stoffel C, et al. Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis[J]. Mol Cell Biochem, 2010, 342(1-2): 111-115.
    [53] Schneider A M, ?zsoy M, Zimmermann F A, et al. Expression of Oxidative Phosphorylation Complexes and Mitochondrial Mass in Pediatric and Adult Inflammatory Bowel Disease[J]. Oxid Med Cell Longev, 2022, 2022: 9151169.
    [54] Mcqueen P, Busman-Sahay K, Rieder F, et al. Intestinal proteomic analysis of a novel non-human primate model of experimental colitis reveals signatures of mitochondrial and metabolic dysfunction[J]. Mucosal Immunol, 2019, 12(6): 1327-1335.
    [55] Hoang N, Brooks K, Edwards K. Sex-specific colonic mitochondrial dysfunction in the indomethacin-induced inflammatory bowel disease model in rats[J]. Res Sq, 2023.
    [56] Sosnovski K E, Braun T, Amir A, et al. GATA6-AS1 Regulates Intestinal Epithelial Mitochondrial Functions, and its Reduced Expression is Linked to Intestinal Inflammation and Less Favourable Disease Course in Ulcerative Colitis[J]. J Crohns Colitis, 2023, 17(6): 960-971.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:266
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-04
  • 最后修改日期:2024-04-14
  • 录用日期:2024-06-28
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭