miR-22-3p靶向GSDMD抑制同型半胱氨酸诱导的平滑肌细胞焦亡
作者:
作者单位:

1.国家卫生健康委代谢性心血管疾病研究重点实验室;2.宁夏医科大学

基金项目:

]国家自然科学(U21A20343, 82370293,82270492);宁夏回族自治区重点研发计划重点项目(2023BEG02074,2022BFH02013,2021BEG02033,2020BFH02001)


miR-22-3P targets GSDMD to inhibit homocysteine induced pyroptosis of vascular smooth muscle cells
Author:
Affiliation:

1.National Health Commission Key Laboratory of Metabolic Cardiovascular Disease Research;2.Ningxia Medical University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的 探讨miR-22-3p对同型半胱氨酸(Hcy)诱导血管平滑肌细胞焦亡的影响。方法 体外培养人血管平滑肌细胞(VSMC)细胞,分为Control组(0 μmol/L Hcy)与Hcy组(100 μmol/L Hcy),Western Blot检测细胞中Pro Caspase-1、GSDMD、N-GSDMD、NLRP3表达水平,qRT-PCR检测miR-22-3p表达情况;ELISA检测上清中IL-1β、IL-18的浓度。转染miR-22-3p对照(miR-22-3p-NC)、miR-22-3p的模拟物(miR-22-3p-mimic)及抑制物(miR-22-3p-inhibitor)后观察Hcy诱导下VSMC的变化。结果 与Control组相比,Hcy组VSMC中Pro Caspase-1、GSDMD、N-GSDMD、NLRP3表达水平增加(P<0.05),IL-1β,IL-18浓度更高(P<0.01),miR-22-3p相对表达水平低(P<0.01);转染miR-22-3p-mimic后,VSMC中Pro Caspase-1、GSDMD、N-GSDMD、NLRP3表达水平显著降低(P<0.01),IL-1β,IL-18浓度降低(P<0.01);转染miR-22-3p-inhibitor后VSMC中Pro Caspase-1、GSDMD、N-GSDMD、NLRP3表达水平显著增加(P<0.01),IL-1β,IL-18浓度升高(P<0.05)。结论 miR-22-3p可抑制Hcy诱导的VSMC焦亡。

    Abstract:

    Objective To investigate the effect of miR-22-3p on pyroptosis of vascular smooth muscle cells induced by homocysteine. Method Human vascular smooth muscle cells (VSMC) were cultured in vitro and divided into the Control group (0 μmol/L Hcy) and the Hcy group (100 μmol/L Hcy). After intervention, Western Blot was performed to detect the expression of Pro Caspase-1, GSDMD, N-GSDMD and NLRP3. The qRT-PCR was used to measure the expression of miR-22-3p. ELISA was utilized to survey the concentration of IL-1β and IL-18 in the supernatant. After transfection with control of miR-22-3p (miR-22-3p-NC) ,mimic of miR-22-3p (miR-22-3p-mimic) , and inhibition of miR-22-3p (miR-22-3p-inhibitor) , to observe the change of VSMC pyroptosis induced by homocysteine. Result Compared with Control group, the expression levels of Pro Caspase-1, GSDMD, N-GSDMD, NLRP3 in VSMC of Hcy Group were increased (P<0.05) , the concentration of Il-1β,IL-18 were higher (P<0.01) , and the relative expression level of miR-22-3p was lower (P<0.01) . After transfection with miR-22-3p-mimic, the expression levels of Pro Caspase-1, GSDMD, N-GSDMD and NLRP3 in VSMC decreased significantly (P<0.01) , and the concentrations of il-1β and IL-18 decreased significantly (P<0.01) . After transfection with miR-22-3p-inhibitor, the expression levels of Pro Caspase-1, GSDMD, N-GSDMD and NLRP3 in VSMC increased significantly (P<0.01) , and the concentrations of il-1β and IL-18 were higher (P<0.05) . Conclusion miR-22-3p delayed Hcy induced VSMC pyroptosis.

    参考文献
    [1] 中国心血管健康与疾病报告2022概要 [J]. 中国循环杂志, 2023, 38(06): 583-612.
    [2] 刘俊田. 动脉粥样硬化发病的炎症机制的研究进展 [J]. 西安交通大学学报(医学版), 2015, 36(02): 141-152.Liu JT. Progress in inflammatory pathogenesis of atherosclerosis[J].Journal of Xi''an Jiao tong University(Medical Sciences) .2015, 36(02): 141-152.
    [3] Basatemur GL,Jørgensen HF, Clarke MCH, et al. Vascular smooth muscle cells in atherosclerosis [J]. Nature reviews Cardiology, 2019, 16(12): 727-744.
    [4] Rajamäki K, Lappalainen J, Oörni K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation [J]. PloS one, 2010, 5(7): e11765.
    [5] 程丝, 冯娟, 王宪. 高同型半胱氨酸血症治疗研究进展 [J]. 生理科学进展, 2011, 42(05): 329-334.Cheng S,Feng J,Wang X .Research Advances in the Treatment of Hyperhomocysteinemia[J]. Progress in Physiological Sciences, 2011, 42(05): 329-334.
    [6] Hasan T, Arora R, Bansal AK, et al. Disturbed homocysteine metabolism is associated with cancer [J]. Experimental molecular medicine, 2019, 51(2): 1-13.
    [7] Lai WK, Kan MY. Homocysteine-Induced Endothelial Dysfunction [J]. Annals of nutrition metabolism, 2015, 67(1): 1-12.
    [8] Leng Y, Chen R, Chen R, et al. HMGB1 mediates homocysteine-induced endothelial cells pyroptosis via cathepsin V-dependent pathway [J]. Biochemical and biophysical research communications, 2020, 532(4): 640-646.
    [9] Ge DW, Wang WW, Chen HT, et al. Functions of microRNAs in osteoporosis [J]. European review for medical and pharmacological sciences, 2017, 21(21): 4784-4789.
    [10] Feng Q, Zheng S, Zheng J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis [J]. Bioscience reports, 2018, 38(3).
    [11] Karakus N, Catak M, Kutluturk F, et al. The effects of circulating MIR22-3p and MIR16-1-3p levels in different stages of subacute thyroiditis [J]. Nucleosides, nucleotides nucleic acids, 2023, 42(6): 436-447.
    [12] Ding Y, Ge Y, Wang D, et al. LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway [J]. Molecules and cells, 2022, 45(6): 388-402.
    [13] Hu Z, Lv X, Chen L, et al. Protective effects of microRNA-22-3p against retinal pigment epithelial inflammatory damage by targeting NLRP3 inflammasome [J]. Journal of cellular physiology, 2019, 234(10): 18849-18857.
    [14] Zhang M, Hu Y, Li H, et al. miR-22-3p as a potential biomarker for coronary artery disease based on integrated bioinformatics analysis [J]. Frontiers in genetics, 2022, 13: 936937.
    [15] Kobiyama K, Ley K. Atherosclerosis [J]. Circulation research, 2018, 123(10): 1118-1120.
    [16] Gimbrone MA, Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis [J]. Circulation research, 2016, 118(4): 620-636.
    [17] Miano JM, Fisher EA, Majesky MW. Fate and State of Vascular Smooth Muscle Cells in Atherosclerosis [J]. Circulation, 2021, 143(21): 2110-2116.
    [18] Wei F, Ding Y, Ou J, et al. Accurate Detection of Hcy in Human Serum and Two-Photon Visualization of Atherosclerosis Using a Highly Specific Fluorescent Probe [J]. Analytical chemistry, 2023, 95(24): 9173-9181.
    [19] Liu X, Luo P, Zhang W, et al. Roles of pyroptosis in atherosclerosis pathogenesis [J]. Biomedicine pharmacotherapy = Biomedecine pharmacotherapie, 2023, 166: 115369.
    [20] Loveless R, Bloomquist R, Teng Y. Pyroptosis at the forefront of anticancer immunity [J]. Journal of experimental clinical cancer research : CR, 2021, 40(1): 264.
    [21] He B, Nie Q, Wang F, et al. Role of pyroptosis in atherosclerosis and its therapeutic implications [J]. Journal of cellular physiology, 2021, 236(10): 7159-7175.
    [22] Paramel Varghese G, Folkersen L, Strawbridge R J, et al. NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis [J]. Journal of the American Heart Association, 2016, 5(5).
    [23] Li Y, Niu X, Xu H, et al. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis [J]. Experimental cell research, 2020, 389(1): 111847.
    [24] Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer [J]. Theranostics, 2022, 12(9): 4310-4329.
    [25] Zhang Y, Liu X, Bai X, et al. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis [J]. Journal of pineal research, 2018, 64(2).
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:147
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-22
  • 最后修改日期:2024-05-05
  • 录用日期:2024-06-28
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭