铁死亡在脓毒症急性肺损伤中的研究进展
作者:
作者单位:

1.河南中医药大学第一附属医院;2.河南中医药大学


Research progress of ferroptosis in sepsis-associated acute lung injury
Author:
Affiliation:

1.The First Affiliated Hospital of Henan University of Traditional Chinese Medicine;2.Henan University of Chinese Medicine

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • | | | |
  • 文章评论
    摘要:

    脓毒症是由于宿主对感染的反应失调而导致的危及生命的器官功能障碍,死亡率极高,其是导致急性肺损伤(acute lung injury, ALI)的主要危险因素,然而脓毒症ALI的病理生理学和发病机制尚不完全清楚,有效药物极为有限。因此,当务之急是挖掘脓毒症ALI的发病机制,并试图发现有效的干预措施,以改善脓毒症ALI患者的预后。近年来,铁死亡被认为与脓毒症ALI的病理生理过程密切相关,抑制相关细胞铁死亡可有效缓疾病的发生发展。本文对靶向相关细胞铁死亡的治疗策略进行综述,以期为脓毒症ALI铁死亡相关研究提供借鉴并为脓毒症ALI的治疗提供新的视角。

    Abstract:

    Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, with an extremely high mortality rate. It is the main risk factor for acute lung injury (ALI). However, the pathophysiology and pathogenesis of sepsis-associated ALI are not fully understood, and effective drugs are extremely limited. Therefore, the urgent task is to explore the pathogenesis of sepsis associated ALI and attempt to discover effective intervention measures to improve the prognosis of sepsis associated ALI patients. In recent years, ferroptosis has been considered closely related to the pathological and physiological processes of sepsis associated ALI, and inhibiting related cell ferroptosis can effectively slow down the occurrence and development of the disease. In this paper, the therapeutic strategies targeting ferroptosis of related cells were reviewed, in order to provide reference for the research on ferroptosis of sepsis associated ALI and provide a new perspective for the treatment of sepsis associated ALI.

    参考文献
    [1] Singer M, Deutschman C S, Seymour C W, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
    [2] Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury [J]. Front Immunol, 2020, 11: 1722.
    [3] Tang X, Liu J, Yao S, et al. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis [J]. Pharm Biol, 2022, 60(1): 2286-2294.
    [4] 张宇, 卢笑晖, 连新宝. 脓毒症急性肺损伤的发生机制及治疗研究进展 [J]. 解放军医学杂志, 2021, 46(11): 1159-1164.
    Zhang Y, Lu XY, Lian XB. Mechanism and treatment of acute lung injury caused by sepsis: research progress [J]. Med J Chin PLA, 2021, 46(11): 1159-1164.
    [6] [5] Xie J, Wang H, Kang Y, et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey [J]. Crit Care Med, 2020, 48(3): e209-e218.
    [7] [6] 李林, 邢福席, 付全有, 等. 脓毒症急性肺损伤治疗的研究进展 [J]. 中华医院感染学杂志, 2024(01): 149-155.
    Li L, Xing FX, Fu YQ, et al. Progress of research on treatment of sepsis-induced acute lung injury [J]. Chin J Nosocomiol, 2024, (01): 149-155.
    [9] [7] Patel V J, Biswas Roy S, Mehta H J, et al. Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome [J]. Biomed Res Int, 2018, 2018: 2476824.
    [10] [8] Sedlackova L, Korolchuk V I. Mitochondrial quality control as a key determinant of cell survival [J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(4): 575-587.
    [11] [9] Xie Y, Hou W, Song X, et al. Ferroptosis: process and function [J]. Cell Death Differ, 2016, 23(3): 369-379.
    [12] [10] Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition [J]. Nat Chem Biol, 2017, 13(1): 91-98.
    [13] [11] Li J, Cao F, Yin H L, et al. Ferroptosis: past, present and future [J]. Cell Death Dis, 2020, 11(2): 88.
    [14] [12] Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy [J]. Protein Cell, 2021, 12(8): 599-620.
    [15] [13] 柳红英, 丁璐, 王卉, 等. GPX4 m6A修饰在脓毒症诱导急性肺损伤小鼠肺上皮细胞铁死亡过程中的调控作用 [J]. 中国病理生理杂志, 2022, 38(09): 1659-1666.
    Liu HY, Ding L, Wang H, et al. Regulatory role of GPX4 m6A modification in ferroptosis of lung epithelial cells in mice with sepsis-induced acute lung injury [J]. Chin J Pathophysiol, 2022, 38(09): 1659-1666.
    [17] [14] Zhang J, Zheng Y, Wang Y, et al. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis [J]. Front Immunol, 2022, 13: 884362.
    [18] [15] Mir S M, Ravuri H G, Pradhan R K, et al. Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in Balb/c mice [J]. Biomed Pharmacother, 2018, 100: 304-315.
    [19] [16] Lu J Y, Sadri N, Schneider R J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs [J]. Genes Dev, 2006, 20(22): 3174-3184.
    [20] [17] Wang Y, Chen D, Xie H, et al. AUF1 protects against ferroptosis to alleviate sepsis-induced acute lung injury by regulating NRF2 and ATF3 [J]. Cell Mol Life Sci, 2022, 79(5): 228.
    [21] [18] Serhan C N, De La Rosa X, Jouvene C. Novel mediators and mechanisms in the resolution of infectious inflammation: evidence for vagus regulation [J]. J Intern Med, 2019, 286(3): 240-258.
    [22] [19] Lv Y, Chen D, Tian X, et al. Protectin conjugates in tissue regeneration 1 alleviates sepsis-induced acute lung injury by inhibiting ferroptosis [J]. J Transl Med, 2023, 21(1): 293.
    [23] [20] Bai X, Li J, Li L, et al. Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice [J]. Front Immunol, 2020, 11: 1391.
    [24] [21] Shen K, Wang X, Wang Y, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury [J]. Redox Biol, 2023, 62: 102655.
    [25] [22] Wei L, Yang Y, Wang W, et al. Circular RNAs in the pathogenesis of sepsis and their clinical implications: A narrative review [J]. Ann Acad Med Singap, 2022, 51(4): 221-227.
    [26] [23] Wang W, Xu R, Zhao H, et al. CircEXOC5 promotes ferroptosis by enhancing ACSL4 mRNA stability via binding to PTBP1 in sepsis-induced acute lung injury [J]. Immunobiology, 2022, 227(4): 152219.
    [27] [24] Zou X, Liu C, Huang Z, et al. Inhibition of STEAP1 ameliorates inflammation and ferroptosis of acute lung injury caused by sepsis in LPS-induced human pulmonary microvascular endothelial cells [J]. Mol Biol Rep, 2023, 50(7): 5667-5674.
    [28] [25] Park I, Kim M, Choe K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury [J]. Eur Respir J, 2019, 53(3): 1800786.
    [29] [26] He R, Liu B, Xiong R, et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury [J]. Cell Death Discov, 2022, 8(1): 43.
    [30] [27] Lai K, Song C, Gao M, et al. Uridine Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Ferroptosis of Macrophage [J]. Int J Mol Sci, 2023, 24(6): 5093.
    [31] [28] Meng G, Zhao S, Xie L, et al. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system [J]. Br J Pharmacol, 2018, 175(8): 1146-1156.
    [32] [29] Li J, Li M, Li L, et al. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury [J]. Mol Immunol, 2022, 141: 318-327.
    [33] [30] Malireddi R K S, Kesavardhana S, Kanneganti T D. ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis) [J]. Front Cell Infect Microbiol, 2019, 9: 406.
    [34] [31] Tang R, Xu J, Zhang B, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity [J]. J Hematol Oncol, 2020, 13(1): 110.
    [35] [32] Zheng Y, Huang Y, Xu Y, et al. Ferroptosis, pyroptosis and necroptosis in acute respiratory distress syndrome [J]. Cell Death Discov, 2023, 9(1): 91.
    [36] [33] Cao Z, Qin H, Huang Y, et al. Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model [J]. Bioengineered, 2022, 13(3): 4810-4820.
    [37] [34] Fang X, Ardehali H, Min J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease [J]. Nat Rev Cardiol, 2023, 20(1): 7-23.
    [38] [35] Wei S, Bi J, Yang L, et al. Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice [J]. Clin Transl Med, 2020, 10(5): e173.
    [39] [36] Xiao J, Yang Q, Zhang Y, et al. Maresin conjugates in tissue regeneration-1 suppresses ferroptosis in septic acute kidney injury [J]. Cell Biosci, 2021, 11(1): 221.
    [40] [37] Wang J, Zhu Q, Wang Y, et al. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis [J]. Free Radic Biol Med, 2022, 187: 171-184.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:203
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-19
  • 最后修改日期:2024-04-09
  • 录用日期:2024-05-23
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭