缺氧细胞模型的研究进展
作者:
作者单位:

西藏民族大学医学部基础医学院

基金项目:

西藏民族大学“青年学人培育计划”资助项目(21MDX03);西藏高原相关疾病分子机制与干预研究重点实验室开放项目(KF2022005)。


Research progress on hypoxic cell models
Author:
Affiliation:

School of Basic Medicine, Ministry of Medicine, Xizang Minzu University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [74]
  • | | | |
  • 文章评论
    摘要:

    在临床上,许多疾病的发生与发展过程中常伴随着细胞缺氧的现象。缺氧不仅是疾病进展的一个重要标志,而且它在推动疾病进程中也扮演着关键角色。因此,改善组织缺氧可能为治疗相关疾病提供新的策略。为了从细胞和分子层面深入研究这类疾病,构建细胞缺氧模型显得尤为重要。目前,常用的缺氧细胞模型主要分为以下三种:化学性缺氧模型、物理性缺氧模型和糖氧剥夺(oxygen glucose deprivation,OGD)模型。本文将对不同类型的缺氧细胞模型进行综述,探讨它们在疾病研究中的应用与局限性。

    Abstract:

    Hypoxia is associated with the occurrence and development of many diseases in clinical settings. Cell hypoxia not only serves as a vital marker for disease advancement but also plays a pivotal role in exacerbating the disease process. Therefore, improving tissue hypoxia may provide new strategies for the treatment of related diseases.. To investigate these diseases at the cellular and molecular levels, it is paramount to establish a cellular hypoxia model. At present, the extensively employed hypoxic cell models can be primarily categorized into three types: chemical hypoxia model, physical hypoxia model, and glucose deprivation hypoxia model.This article will overview the various types of hypoxic cell models and scrutinize their application and limitations in disease research.

    参考文献
    [1] K-M Lodge, Vassallo A, Liu B, et al. Hypoxia Increases the Potential for Neutrophil-mediated Endothelial Damage in Chronic Obstructive Pulmonary Disease[J]. Am J Respir Crit Care Med, 2022, 205(8): 903-916.
    [2] J Lu, Peng Y, Zou J, et al. Hypoxia Inducible Factor-1alpha Is a Regulator of Autophagy in Osteoarthritic Chondrocytes[J]. Cartilage, 2021, 13(2_suppl): 1030S-1040S.
    [3] R Bai, Li Y, Jian L, et al. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies[J]. Mol Cancer, 2022, 21(1): 177.
    [4] H Zhao, Wong R-J, Stevenson D-K. The Impact of Hypoxia in Early Pregnancy on Placental Cells[J]. Int J Mol Sci, 2021, 22(18).
    [5] 尹春月,龙禹. 氯化钴模拟法构建绒毛外滋养细胞缺氧模型[J]. 现代妇产科进展, 2023, 32(09): 645-649.
    [6] 周春燕等. 生物化学与分子生物学[M]. 人民卫生出版社, 2018.
    [7] M Ohh, Park C-W, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein[J]. Nat Cell Biol, 2000, 2(7): 423-427.
    [8] S-S Karuppagounder, Ratan R-R. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics?[J]. J Cereb Blood Flow Metab, 2012, 32(7): 1347-1361.
    [9] J Munoz-Sanchez, Chanez-Cardenas M-E. The use of cobalt chloride as a chemical hypoxia model[J]. J Appl Toxicol, 2019, 39(4): 556-570.
    [10] Y Yuan, Hilliard G, Ferguson T, et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha[J]. J Biol Chem, 2003, 278(18): 15911-15916.
    [11] Q Ao, Su W, Guo S, et al. SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1alpha[J]. Sci Rep, 2015, 516396.
    [12] 郭树鹏,栾莉莉,崔志馨,等. 青葙苷A抑制缺氧乳腺癌MDA-MB-231细胞增殖、迁移和侵袭能力的研究[J]. 辽宁中医药大学学报, 2023, 1-16.
    [13] 韦燕飞,吕贝贝,金丽杰,等. 缺氧条件下白花丹醌对肝癌HepG2细胞增殖、凋亡与侵袭及HIF-1α表达的影响[J]. 中国现代应用药学, 2022, 39(14): 1789-1795.
    [14] 呼格吉乐,王婷,苏慧敏. EPO对窒息诱导新生大鼠脑损伤和CoCl_2诱导人脑胶质瘤细胞系U251缺氧的改善作用[J]. 山东医药, 2023, 63(09): 46-51.
    [15] 刘菲,张昊,刘博,等. 氯化钴诱导的N2a细胞缺氧损伤模型的机制研究[J]. 广东药科大学学报, 2020, 36(02): 249-253.
    [16] 胡晗. 从缺氧-VEGF途径研究黄芪对人视网膜色素上皮细胞的影响[D]. 长江大学, 2022.
    [17] R Tevlin, Longaker M-T, Wan D-C. Deferoxamine to Minimize Fibrosis During Radiation Therapy[J]. Adv Wound Care (New Rochelle), 2022, 11(10): 548-559.
    [18] Y Zhang, Yapryntseva M-A, Vdovin A, et al. Modeling hypoxia facilitates cancer cell survival through downregulation of p53 expression[J]. Chem Biol Interact, 2021, 345109553.
    [19] Y Zhu, Chang B, Pang Y, et al. Advances in Hypoxia-Inducible Factor-1alpha Stabilizer Deferoxamine in Tissue Engineering[J]. Tissue Eng Part B Rev, 2023, 29(4): 347-357.
    [20] Z Guo, Lin J, Sun K, et al. Deferoxamine Alleviates Osteoarthritis by Inhibiting Chondrocyte Ferroptosis and Activating the Nrf2 Pathway[J]. Front Pharmacol, 2022, 13791376.
    [21] 朱杰,康非吾. 低氧诱导因子-1α诱导骨细胞表达核因子κB受体活化因子配体的研究. 中国重庆: 2018: 2.
    [22] 王开,荆得宝,于素平,等. 模拟低氧对舌鳞癌SCC-15细胞系中SOX2和OCT4表达的影响[J]. 第二军医大学学报, 2017, 38(07): 891-896.
    [23] S Chen, Fan F, Zhang Y, et al. Metabolites from scutellarin alleviating deferoxamine-induced hypoxia injury in BV2 cells cultured on microfluidic chip combined with a mass spectrometer[J]. Talanta, 2023, 259124478.
    [24] R-B Jones, Silva A-D, Ankenbauer K-E, et al. Role of the ST6GAL1 sialyltransferase in regulating ovarian cancer cell metabolism[J]. Glycobiology, 2023, 33(8): 626-636.
    [25] R Tajali, Eidi A, Ahmadi Tafti-H, et al. Restoring the Angiogenic Capacity of the Human Diabetic Adipose-derived mesenchymal stem cells Primed with Deferoxamine as a Hypoxia Mimetic Agent: Role of HIF-1alpha[J]. Adv Pharm Bull, 2023, 13(2): 350-360.
    [26] C Hao, You J, Qiu H, et al. Hypoxic preconditioning improves the survival and pro-angiogenic capacity of transplanted human umbilical cord mesenchymal stem cells via HIF-1alpha signaling in a rat model of bronchopulmonary dysplasia[J]. Biochem Biophys Res Commun, 2022, 605111-118.
    [27] R Chen, Ahmed M-A, Forsyth N-R. Dimethyloxalylglycine (DMOG), a Hypoxia Mimetic Agent, Does Not Replicate a Rat Pheochromocytoma (PC12) Cell Biological Response to Reduced Oxygen Culture[J]. Biomolecules, 2022, 12(4).
    [28] J Zou, Yang J, Zhu X, et al. Stabilization of hypoxia-inducible factor ameliorates glomerular injury sensitization after tubulointerstitial injury[J]. Kidney Int, 2021, 99(3): 620-631.
    [29] W Shao, Li Z, Wang B, et al. Dimethyloxalylglycine Attenuates Steroid-Associated Endothelial Progenitor Cell Impairment and Osteonecrosis of the Femoral Head by Regulating the HIF-1alpha Signaling Pathway[J]. Biomedicines, 2023, 11(4).
    [30] M-H Chen, Wang Y-H, Sun B-J, et al. HIF-1alpha activator DMOG inhibits alveolar bone resorption in murine periodontitis by regulating macrophage polarization[J]. Int Immunopharmacol, 2021, 99107901.
    [31] S Zippusch, Besecke KFW, Helms F, et al. Chemically induced hypoxia by dimethyloxalylglycine (DMOG)-loaded nanoporous silica nanoparticles supports endothelial tube formation by sustained VEGF release from adipose tissue-derived stem cells[J]. Regen Biomater, 2021, 8(5): b39.
    [32] L Chen, Huang X, Chen H, et al. Hypoxia-mimicking scaffolds with controlled release of DMOG and PTHrP to promote cartilage regeneration via the HIF-1alpha/YAP signaling pathway[J]. Int J Biol Macromol, 2023, 226716-729.
    [33] Z-Q Liu, Shang L-L, Ge S-H. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling[J]. J Dent Sci, 2021, 16(3): 937-947.
    [34] A-G Abu-Shahba, Gebraad A, Kaur S, et al. Proangiogenic Hypoxia-Mimicking Agents Attenuate Osteogenic Potential of Adipose Stem/Stromal Cells[J]. Tissue Eng Regen Med, 2020, 17(4): 477-493.
    [35] 许蜀闽,王培勇,马红英. 连二亚硫酸钠在建立培养细胞的无氧环境中的应用[J]. 第三军医大学学报, 2005, (04): 359-360.
    [36] R-Z Zhao, Jiang S, Ru N-Y, et al. Comparison of hypoxic effects induced by chemical and physical hypoxia on cardiomyocytes[J]. Can J Physiol Pharmacol, 2019, 97(10): 980-988.
    [37] 许瑞卿. 黄连素对体外培养脊髓神经细胞缺氧损伤所诱导自噬的影响[D]. 宁夏医科大学, 2021.
    [38] 王丹,田春艳,陈桂生,等. 连二亚硫酸钠诱导HT22细胞缺氧复氧模型的制备[J]. 宁夏医科大学学报, 2020, 42(10): 983-986.
    [39] 孙晨,戈胜,宁夏青,等. 连二亚硫酸钠诱导大鼠肝细胞氧化应激模型的建立[J]. 中国畜牧兽医, 2023, 50(06): 2217-2223.
    [40] D Chu, Zhang Z. Trichosanthis Pericarpium Aqueous Extract Protects H9c2 Cardiomyocytes from Hypoxia/Reoxygenation Injury by Regulating PI3K/Akt/NO Pathway[J]. Molecules, 2018, 23(10).
    [41] 刘莉娜,王红梅,周建明,等. 连二亚硫酸钠诱导SY5Y细胞缺糖缺氧模型及泽泻白术药对的作用观察[J]. 世界科学技术-中医药现代化, 2016, 18(03): 464-469.
    [42] 高莉,彭晓明,霍仕霞,等. 类叶升麻苷对缺糖缺氧诱导PC12细胞损伤的保护作用[J]. 中成药, 2015, 37(08): 1821-1823.
    [43] 王丽丽,赵建力,刘保江. 舒芬太尼对培养大鼠乳鼠缺氧心肌细胞损伤保护作用的研究[J]. 中西医结合心脑血管病杂志, 2010, 8(01): 73-74.
    [44] 饶淑云,钱之玉. 西红花酸对缺糖缺氧心肌细胞损伤的保护作用[J]. 中草药, 2004, (04): 71-73.
    [45] 关付,于波,齐国先. 原代培养大鼠心肌细胞化学性缺氧模型的建立. 中国福建厦门: 2006: 1.
    [46] 宋诚,王纪田,石拴霞,等. 缺氧条件下GC-1细胞凋亡的作用机制研究[J]. 生命科学研究, 2023, 1-10.
    [47] 包春生,高玉峰. 黑苏嘎-25对缺氧诱导的神经干细胞增殖、凋亡及炎症反应的影响[J]. 中国老年学杂志, 2022, 42(22): 5579-5583.
    [48] 付承筑,王天生,王柏翔,等. 缺氧条件下卡拉胶寡糖对肿瘤细胞迁移的影响[J]. 中国食品添加剂, 2022, 33(09): 41-47.
    [49] 周圆,王蒙,王凌晨,等. 肾衰Ⅱ号方抑制NLRP3炎症小体改善慢性缺氧诱导HK-2细胞损伤的机制[J]. 中华中医药杂志, 2022, 37(08): 4443-4448.
    [50] 吴连连,胡安康. 胰岛素样生长因子-1预处理对原代心肌细胞缺氧损伤的保护作用[J]. 生物化工, 2022, 8(04): 66-69.
    [51] Q Wang, Wang P, Qin Z, et al. Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia[J]. Redox Biol, 2021, 38101815.
    [52] Q Li, Hong Y, Chen J, et al. Hypoxia-Induced HIF-1alpha Expression Promotes Neurogenic Bladder Fibrosis via EMT and Pyroptosis[J]. Cells, 2022, 11(23).
    [53] Y Yang, Chen C, Zuo Q, et al. NARF is a hypoxia-induced coactivator for OCT4-mediated breast cancer stem cell specification[J]. Sci Adv, 2022, 8(49): o5000.
    [54] 任萍,曹俊岭,林珀吏,等. 基于分子对接技术探讨木犀草素调控脂氧合酶途径抗H9c2心肌细胞缺氧缺糖/复氧复糖损伤的分子机制[J]. 中国中药杂志, 2021, 46(21): 5665-5673.
    [55] 聂芳,李可,王媛,等. TTC36蛋白在缺氧复氧诱导的肝脏缺血再灌注损伤中的表达[J]. 川北医学院学报, 2021, 36(07): 832-835.
    [56] 牛其芳,李德龙,杨杨,等. 人血管内皮细胞缺氧复氧损伤细胞模型的建立[J]. 中国口腔颌面外科杂志, 2019, 17(04): 295-299.
    [57] C Li, Sui C, Wang W, et al. Baicalin Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 Signaling Axes in Neuron-Astrocyte Cocultures[J]. Front Pharmacol, 2021, 12599543.
    [58] 杨辉,侯琼琼,易健,等. 补脑Ⅰ号联合骨髓间充质干细胞对缺氧缺糖脑微血管内皮细胞损伤VEGF、ICAM-1表达的影响[J]. 中华中医药杂志, 2021, 36(09): 5482-5486.
    [59] 蒋邦治,唐永刚,韩志安,等. LncRNA BDNF-AS靶向miR-765影响缺氧缺糖诱导的PC12细胞神经损伤的实验研究[J]. 河北医药, 2022, 44(20): 3075-3078.
    [60] 杨春澜,孟祥武,郑龙,等. 大黄素通过TLR4/NF-κB信号通路减轻缺糖/缺氧对小胶质细胞的损伤[J]. 中国病理生理杂志, 2019, 35(12): 2285-2289.
    [61] 李钰佳,李定祥,彭珣,等. 基于AMPK/mTOR/ULK1自噬相关通路探讨左归降糖通脉方对AGEs合并缺糖缺氧星形胶质细胞炎性损伤的影响[J]. 中国实验方剂学杂志, 2022, 28(16): 90-99.
    [62] Y Yuan, Zhai Y, Chen J, et al. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis[J]. Biomolecules, 2021, 11(7).
    [63] Z Hu, Yuan Y, Zhang X, et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Attenuate Oxygen-Glucose Deprivation/Reperfusion-Induced Microglial Pyroptosis by Promoting FOXO3a-Dependent Mitophagy[J]. Oxid Med Cell Longev, 2021, 20216219715.
    [64] X Zeng, Zhang Y-D, Ma R-Y, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis[J]. Mil Med Res, 2022, 9(1): 25.
    [65] C Chen, Chen W, Zhou X, et al. Hyperbaric oxygen protects HT22 cells and PC12 cells from damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of Nrf2/System Xc-/GPX4 axis-mediated ferroptosis[J]. PLoS One, 2022, 17(11): e276083.
    [66] X-J Liu, Lv Y-F, Cui W-Z, et al. Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway[J]. FEBS Open Bio, 2021, 11(11): 2966-2976.
    [67] 宋海岩,连辉,张毅敏,等. 低氧诱导因子对缺氧缺糖诱导的心肌细胞损伤模型中自噬的调控作用[J]. 中国临床解剖学杂志, 2018, 36(04): 419-422.
    [68] K Lolmede, Durand De-Saint-Front-V, Galitzky J, et al. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes[J]. Int J Obes Relat Metab Disord, 2003, 27(10): 1187-1195.
    [69] J-R Zapata-Morales, Galicia-Cruz O-G, Franco M, et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia[J]. J Biol Chem, 2014, 289(1): 346-357.
    [70] X Jing, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 157.
    [71] B Wang, Li Z-L, Zhang Y-L, et al. Hypoxia and chronic kidney disease[J]. EBioMedicine, 2022, 77103942.
    [72] Omar-J Mohammad, Hai Y, Jin S. Hypoxia-induced factor and its role in liver fibrosis[J]. PeerJ, 2022, 10e14299.
    [73] Q Bao, Zhang B, Suo Y, et al. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis[J]. Elife, 2020, 9.
    [74] D Duscher, Neofytou E, Wong V-W, et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers[J]. Proc Natl Acad Sci U S A, 2015, 112(1): 94-99.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:320
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-15
  • 最后修改日期:2024-08-25
  • 录用日期:2024-10-29
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭