卵巢切除对APP/PS1小鼠认知功能和海马雌激素受体表达的影响
作者:
作者单位:

1.上海中医药大学附属龙华医院;2.上海中医药大学

基金项目:

国家自然科学基金资助项目(82174427)


The effect of ovariectomy on cognitive function and hippocampal estrogen receptor expression in APP/PS1 mice
Author:
Affiliation:

1.Longhua Hospital of Shanghai University of Traditional Chinese Medicine;2.Shanghai University of Traditional Chinese Medicine

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    摘要:目的:本研究旨在观察阿尔茨海默病(Alzheimer’s disease, AD)动物模型APP/PS1雌性小鼠卵巢切除(ovariectomized,ovx)术后海马组织中Aβ沉积和雌激素受体水平在不同月龄的变化规律。方法:将3月龄APP/PS1雌性小鼠分3组,每组20只,每组10只采用经腹手术切除双侧卵巢作为模型组,10只对照组(sham组)手术时仅摘除相应部位的等体积脂肪作为对照组(sham组),分别饲养3个月、4个月、5个月作为6月龄组、7月龄组、8月龄组,通过Morris水迷宫评价不同月龄APP/PS1小鼠认知功能,透射电镜观察两组小鼠海马CA1区细胞内细胞器形态变化,免疫荧光染色检测两组小鼠海马CA1区Aβ沉积,ELISA检测两组小鼠血清雌激素、ROS、SOD、MDA水平和含量,western blot测定ERα和Erβ表达水平。结果:随着月龄的不断增加,水迷宫测试中ovx组小鼠逃避潜伏期逐渐延长,海马CA1区Aβ沉积增加、海马神经元线粒体肿胀增加,胞浆内见大量脂褐素及淀粉样沉积;血清雌二醇水平、SOD活力下降,ROS水平、MDA含量水平增加,海马组织ERα和ERβ表达降低。结论:小鼠卵巢切除术后可能会加剧海马Aβ沉积,其认知功能降低呈现年龄依赖性。

    Abstract:

    Abstract: Objective: The present study aims to observe the changes in Aβ deposition and estrogen receptor levels in the hippocampal tissue of female APP/PS1 mice with Alzheimer's disease (AD) after ovariectomy (ovx) at different ages. Method: 3-month-old APP/PS1 female mice were divided into 3 groups, with 20 mice in each group. 10 mice in each group were treated with bilateral ovarian resection via abdominal surgery as the model group. 10 mice in the control group (sham group) were treated with only equivalent volume fat removed from the corresponding area during surgery as the control group (sham group). Feed APP/PS1 mice at different ages for 3 months, 4 months, and 5 months as the 6-month, 7-month, and 8-month age groups. Evaluate the cognitive function of APP/PS1 mice at different ages using Morris water maze. Observe the morphological changes of intracellular organelles in the CA1 area of the hippocampus of the two groups of mice using transmission electron microscopy. Immunofluorescence staining is used to detect the deposition of Aβ in the CA1 area of the hippocampus of the two groups of mice. ELISA is used to detect the levels and contents of serum estrogen, ROS, SOD, and MDA, and Western blot is used to determine the expression levels of ERα and ERβ. Result: As the age increased, the escape latency of the ovx group mice in the water maze test gradually prolonged, the deposition of Aβ in the hippocampal CA1 area increased, the mitochondrial swelling of hippocampal neurons increased, and a large amount of lipofuscin and amyloid deposition were observed in the cytoplasm. The serum estradiol level and SOD activity decrease, while the ROS level and MDA content increase. The expression of ERα and ERβ in hippocampal tissue decreases. Conclusion: Ovariectomy in mice with low estrogen status may exacerbate hippocampal Aβ deposition and age-dependent cognitive decline.

    参考文献
    [1] McCarthy M, Raval AP. The peri-menopause in a woman''s life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation. 2020 Oct 23;17(1):317.
    [2] Xiong J, Kang SS, Wang Z, Liu X, Kuo TC, Korkmaz F, Padilla A, Miyashita S, Chan P, Zhang Z, Katsel P, Burgess J, Gumerova A, Ievleva K, Sant D, Yu SP, Muradova V, Frolinger T, Lizneva D, Iqbal J, Goosens KA, Gera S, Rosen CJ, Haroutunian V, Ryu V, Yuen T, Zaidi M, Ye K. FSH blockade improves cognition in mice with Alzheimer''s disease. Nature. 2022 Mar;603(7901):470-476.
    [3] Marongiu R (2019). Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer''s Disease. Front Aging Neurosci. doi: 10.3389/fnagi.2019.00242. PMID: 31551757; PMCID: PMC6743419.
    [4] Sato K, Takayama KI, Inoue S. Expression and function of estrogen receptors and estrogen-related receptors in the brain and their association with Alzheimer''s disease. Front Endocrinol (Lausanne). 2023 Jul 4;14:1220150.
    [5] Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer''s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022 Aug;21(8):726-734.
    [6] Lin T, Tjernberg LO, Schedin-Weiss S. Neuronal Trafficking of the Amyloid Precursor Protein-What Do We Really Know? Biomedicines. 2021 Jul 10;9(7):801.
    [7] Jucker M, Walker LC. Alzheimer''s disease: From immunotherapy to immunoprevention. Cell. 2023 Sep 28;186(20):4260-4270.
    [8] S?derberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, M?ller C, Lannfelt L. Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer''s Disease. Neurotherapeutics. 2023 Jan;20(1):195-206.
    [9] Shepherd A, Lim JKH, Wong VHY, Zeleznikow-Johnston AM, Churilov L, Nguyen CTO, Bui BV, Hannan AJ, Burrows EL. Progressive impairments in executive function in the APP/PS1 model of Alzheimer''s disease as measured by translatable touchscreen testing. Neurobiol Aging. 2021 Dec;108:58-71.
    [10] Uddin MS, Rahman MM, Jakaria M, Rahman MS, Hossain MS, Islam A, Ahmed M, Mathew B, Omar UM, Barreto GE, Ashraf GM. Estrogen Signaling in Alzheimer''s Disease: Molecular Insights and Therapeutic Targets for Alzheimer''s Dementia. Mol Neurobiol. 2020 Jun;57(6):2654-2670.
    [11] Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer''s Disease. Mol Neurobiol. 2023 Mar;60(3):1515-1526.
    [12] Pike CJ. Sex and the development of Alzheimer''s disease. J Neurosci Res. 2017 Jan 2;95(1-2):671-680.
    [13] Mishra A, Wang Y, Yin F, Vitali F, Rodgers KE, Soto M, Mosconi L, Wang T, Brinton RD. A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer''s prevention treatment. Ageing Res Rev. 2022 Feb;74:101542.
    [14] Duralde ER, Sobel TH, Manson JE. Management of perimenopausal and menopausal symptoms. BMJ. 2023 Aug 8;382:e072612.
    [15] Scheyer O, Rahman A, Hristov H, Berkowitz C, Isaacson RS, Diaz Brinton R, Mosconi L. Female Sex and Alzheimer''s Risk: The Menopause Connection. J Prev Alzheimers Dis. 2018;5(4):225-230.
    [16] Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer''s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol. 2021 Jan 15;167:382-394.
    [17] Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer''s disease: challenges, successes and future. Signal Transduct Target Ther. 2023 Jun 30;8(1):248.
    [18] Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, Suhy J, Forrestal F, Tian Y, Umans K, Wang G, Singhal P, Budd Haeberlein S, Smirnakis K. Amyloid-Related Imaging Abnormalities in 2 Phase 3 Studies Evaluating Aducanumab in Patients With Early Alzheimer Disease. JAMA Neurol. 2022 Jan 1;79(1):13-21.
    [19] Huang SY, Zhang YR, Guo Y, Du J, Ren P, Wu BS, Feng JF; Alzheimer''s Disease Neuroimaging Initiative; Cheng W, Yu JT. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer''s disease. Alzheimers Dement. 2024 Mar 19.
    [20] Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer''s disease. Zool Res. 2022 May 18;43(3):481-496.
    [21] Zhao W, Hou Y, Song X, Wang L, Zhang F, Zhang H, Yu H, Zhou Y. Estrogen Deficiency Induces Mitochondrial Damage Prior to Emergence of Cognitive Deficits in a Postmenopausal Mouse Model. Front Aging Neurosci. 2021 Jul 15;13:713819.
    [22] Tecalco-Cruz AC, López-Canovas L, Azuara-Liceaga E. Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer''s disease in aging women. Metab Brain Dis. 2023 Mar;38(3):783-793.
    [23] Marbouti L, Zahmatkesh M, Riahi E, Shafiee Sabet M. GnRH protective effects against amyloid β-induced cognitive decline: A potential role of the 17β-estradiol. Mol Cell Endocrinol. 2020 Dec 1;518:110985.
    [24] Lai YJ, Zhu BL, Sun F, Luo D, Ma YL, Luo B, Tang J, Xiong MJ, Liu L, Long Y, Hu XT, He L, Deng XJ, Zhang JH, Yang J, Yan Z, Chen GJ. Estrogen receptor α promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell. 2019 Aug;18(4):e12961.
    [25] Moors TE, Li S, McCaffery TD, Ho GPH, Bechade PA, Pham LN, Ericsson M, Nuber S. Increased palmitoylation improves estrogen receptor alpha-dependent hippocampal synaptic deficits in a mouse model of synucleinopathy. Sci Adv. 2023 Nov 15;9(46):eadj1454.
    [26] Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem. 2021 Dec 17;65(6):913-925.
    [27] Tang Y, Min Z, Xiang XJ, Liu L, Ma YL, Zhu BL, Song L, Tang J, Deng XJ, Yan Z, Chen GJ. Estrogen-related receptor alpha is involved in Alzheimer''s disease-like pathology. Exp Neurol. 2018 Jul;305:89-96.
    [28] Gu Y, Zhang N, Zhu S, Lu S, Jiang H, Zhou H. Estradiol reduced 5-HT reuptake by downregulating the gene expression of Plasma Membrane Monoamine Transporter (PMAT, Slc29a4) through estrogen receptor β and the MAPK/ERK signaling pathway. Eur J Pharmacol. 2022 Jun 5;924:174939.
    [29] Zhang H, Su Y, Sun Z, Chen M, Han Y, Li Y, Dong X, Ding S, Fang Z, Li W, Li W. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice. J Ginseng Res. 2021 Nov;45(6):665-675.
    [30] Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2-3):65-87.
    [31] Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer''s disease. Open Biol. 2021 Jun;11(6):210013.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:233
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-16
  • 最后修改日期:2024-07-09
  • 录用日期:2024-07-11
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭