神经纤毛蛋白-1在动脉粥样硬化中的作用机制研究进展
作者:
作者单位:

1.浙江中医药大学第一临床医学院;2.浙江省中医院心血管内科

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research Progress on the Mechanisms of Neuropilin-1 in Atherosclerosis
Author:
Affiliation:

1.the First Clinical Medical College of Zhejiang Chinese Medicinal University;2.Department of Cardiology,Zhejiang Provincial Hospital of Traditional Chinese Medicine

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    动脉粥样硬化(atherosclerosis, AS)是冠心病的主要病理基础,对其进程的干预对于冠心病的预防和治疗具有重要意义。神经纤毛蛋白-1(neuropilin-1, NRP1)属于neuropilin受体家族,与包括血管内皮生长因子(vascular endothelial growth factor, VEGF)和转化生长因子β(transforming growth factor-β, TGF-β)在内的多种生长因子关系密切。NRP1通过其在血管生成、炎症反应和血管内皮壁面剪切应力感受等过程中发挥的重要作用影响AS进程。因此,深入探索NRP1在AS中的作用机制,开发针对NRP1的靶向治疗策略,将为AS的诊断和治疗提供新的思路。

    Abstract:

    Atherosclerosis(AS), the primary pathological basis of coronary heart disease, is of significant importance in the prevention and treatment of coronary heart disease. Neuropilin-1 (NRP1), a member of the neuropilin receptor family, is closely associated with various growth factors, including vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β). NRP1 influences the progression of atherosclerosis through its crucial roles in angiogenesis, inflammatory responses, and the sensing of shear stress on the vascular endothelium. Therefore, a thorough exploration of the mechanisms underlying NRP1's role in atherosclerosis and the development of NRP1-targeted therapeutic strategies will provide new insights into the diagnosis and treatment of atherosclerosis.

    参考文献
    [1] Raimondi C, Brash JT, Fantin A, et al. NRP1 function and targeting in neurovascular development and eye disease [J]. Prog Retin Eye Res, 2016, 52: 64-83.
    [2] Broz M, Kolari? A, Juki? M, et al. Neuropilin (NRPs) related pathological conditions and their modulators [J]. Int J Mol Sci, 2022, 23(15) : 8402.
    [3] Cantuti-Castelvetri L, Ojha R, Pedro L D, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity [J]. Science (New York, NY), 2020, 370(6518) : 856-860.
    [4] Dumond A, Pagès G. Neuropilins, as relevant oncology target: Their role in the tumoral microenvironment [J]. Front Cell Dev Biol, 2020, 8: 662.
    [5] Matilla L, Arrieta V, Jover E, et al. Soluble st2 induces cardiac fibroblast activation and collagen synthesis via neuropilin-1 [J]. Cells, 2020, 9(7) : 1667.
    [6] Soehnlein O, Libby P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic [J]. Nat Rev Drug Discov, 2021, 20(8) : 589-610.
    [7] Nakanishi Y, Kang S, Kumanogoh A. Axon guidance molecules in immunometabolic diseases [J]. Inflamm Regen, 2022, 42(1) : 5.
    [8] Li X, Wang J, Wu C, et al. Micrornas involved in the TGF-β signaling pathway in atherosclerosis [J]. Biomed Pharmacother, 2022, 146: 112499.
    [9] Chen P-Y, Qin L, Li G, et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis [J]. Nat Metab, 2019, 1(9) : 912-926.
    [10] 韩淑娴, 王春淼, 李玉洁, 等. 血管外膜炎症在动脉粥样硬化中的作用及研究进展 [J]. 中国比较医学杂志, 2019, 29(9) : 114-119, 126. Han S X, Wang C M, Li Y J, et al. Role and research advances of vascular adventitial inflammation in atherosclerosis [J]. Chin J Comp Med, 2019, 29(9) : 114-119, 126.
    [11] 周凤华, 程赛博, 张宇, 等. 黄连解毒汤通过调节性T细胞产生抗动脉粥样硬化作用 [J]. 中国实验动物学报, 2016, 24(3) : 233-238. Zhou F H, Cheng S B, Zhang Y, et al. Anti-atherosclerotic effect of a Chinese medicine, Huanglian Jiedu Decoction, mediated by regulatory T cells [J]. Acta Lab Anim Sci Sin, 2016, 24(3) : 233-238.
    [12] Sharma M, Schlegel M P, Afonso M S, et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression [J]. Circ Res, 2020, 127(3) : 335-353.
    [13] Pellet-Many C, Frankel P, Jia H, et al. Neuropilins: Structure, function and role in disease [J]. Biochem J, 2008, 411(2) : 211-226.
    [14] Sumi C, Hirose N, Yanoshita M, et al. Semaphorin 3A inhibits inflammation in chondrocytes under excessive mechanical stress [J]. Mediators Inflamm, 2018, 2018: 5703651.
    [15] Zhang H, Lu Y, Wu B, et al. Semaphorin 3A mitigates lipopolysaccharide-induced chondrocyte inflammation, apoptosis and extracellular matrix degradation by binding to neuropilin-1 [J]. Bioengineered, 2021, 12(2) : 9641-9654.
    [16] Nagy N. NRP1 activates NF-κB signaling pathway and initiates proliferation in keratinocytes [J]. Int J Genomic Med, 2013, 1(1): 1000102.
    [17] Li Y, Fan W, Link F, et al. Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease [J]. JHEP Rep, 2022, 4(2) : 100397.
    [18] Glinka Y, Prud’homme G J. Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity [J]. J Leukoc Biol, 2008, 84(1) : 302-310.
    [19] Gaddis D E, E. Padgett L, Wu R, et al. Neuropilin-1 expression on CD4 T cells is atherogenic and facilitates T cell migration to the aorta in atherosclerosis [J]. J Immunol, 2019, 203(12) : 3237-3246.
    [20] Wang Y, Cao Y, Yamada S, et al. Cardiomyopathy and worsened ischemic heart failure in SM22-α cre-mediated neuropilin-1 null mice: Dysregulation of PGC1α and mitochondrial homeostasis [J]. Arterioscler Thromb Vasc Biol, 2015, 35(6) : 1401-1412.
    [21] Ding Z, Du W, Lei Z, et al. Neuropilin 1 modulates TGF?β1?induced epithelial?mesenchymal transition in non?small cell lung cancer [J]. Int J Oncol, 2020, 56(2) : 531-543.
    [22] Chikh A, Raimondi C. Endothelial neuropilin-1: A multifaced signal transducer with an emerging role in inflammation and atherosclerosis beyond angiogenesis [J]. Biochem Soc Trans, 2024, 52(1) : 137-150.
    [23] Bosseboeuf E, Chikh A, Chaker A B, et al. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow [J]. Sci Signal, 2023, 16(786) : eabo4863.
    [24] Dudley A C, Griffioen A W. Pathological angiogenesis: Mechanisms and therapeutic strategies [J]. Angiogenesis, 2023, 26(3) : 313-347.
    [25] Dabravolski S A, Khotina V A, Omelchenko A V, et al. The role of the VEGF family in atherosclerosis development and its potential as treatment targets [J]. Int J Mol Sci, 2022, 23(2) : 931.
    [26] 田静, 马英杰, 王鹏, 等. 血管内皮功能障碍及其评估技术 [J]. 中国比较医学杂志, 2023, 33(7) : 130-140. Tian J, Ma Y J, Wang P, et al. Vascular endothelial dysfunction and its functional assessment [J]. Chin J Comp Med, 2023, 33(7) : 130-140.
    [27] Bosseboeuf E, Raimondi C. Signalling, metabolic pathways and iron homeostasis in endothelial cells in health, atherosclerosis and alzheimer''s disease [J]. Cells, 2020, 9(9) : 2055.
    [28] Ko J H, Kwon H S, Kim B, et al. Preclinical efficacy and safety of an anti-human VEGFA and anti-human NRP1 dual-targeting bispecific antibody (IDB0076) [J]. Biomolecules, 2020, 10(6) : 919.
    [29] Räsänen M, Sultan I, Paech J, et al. VEGF-B promotes endocardium-derived coronary vessel development and cardiac regeneration [J]. Circulation, 2021, 143(1) : 65-77.
    [30] Mota F, Yelland T, Hutton J A, et al. Peptides derived from vascular endothelial growth factor B show potent binding to neuropilin-1 [J]. Chembiochem, 2022, 23(1) : e202100463.
    [31] Sarabipour S, Kinghorn K, Quigley K M, et al. Trafficking dynamics of VEGFR1, VEGFR2, and NRP1 in human endothelial cells [J]. PLoS Comput Biol, 2024, 20(2) : e1011798.
    [32] Gelfand M V, Hagan N, Tata A, et al. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding [J]. Elife, 2014, 3: e03720.
    [33] Sharma S, Ehrlich M, Zhang M, et al. NRP1 interacts with endoglin and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting [J]. Commun Biol, 2024, 7(1) : 112.
    [34] Colotti G, Failla C M, Lacal P M, et al. Neuropilin-1 is required for endothelial cell adhesion to soluble vascular endothelial growth factor receptor 1 [J]. FEBS J, 2022, 289(1) : 183-198.
    [35] McQueen A, Warboys C M. Mechanosignalling pathways that regulate endothelial barrier function [J]. Curr Opin Cell Biol, 2023, 84: 102213.
    [36] Wang X, Shen Y, Shang M, et al. Endothelial mechanobiology in atherosclerosis [J]. Cardiovasc Res, 2023, 119(8) : 1656-1675.
    [37] Zhou M, Yu Y, Chen R, et al. Wall shear stress and its role in atherosclerosis [J]. Front Cardiovasc Med, 2023, 10: 1083547.
    [38] Mehta V, Pang K L, Rozbesky D, et al. The guidance receptor plexin D1 is a mechanosensor in endothelial cells [J]. Nature, 2020, 578(7794) : 290-295.
    [39] Zhang S, Zhang Y, Zhang P, et al. Plexin D1 mediates disturbed flow-induced M1 macrophage polarization in atherosclerosis [J]. Heliyon, 2023, 9(6) : e17314.
    1
    1
    [42] [5] Dumond A, Pagès G. Neuropilins, as relevant oncology target: Their role in the tumoral microenvironment [J]. Front Cell Dev Biol, 2020, 8: 662.
    [43] [6] Kilari S, Wang Y, Singh A, et al. Neuropilin-1 deficiency in vascular smooth muscle cells is associated with hereditary hemorrhagic telangiectasia arteriovenous malformations [J]. JCI Insight, 2022, 7(9) : e155565.
    [44] [7] Matilla L, Arrieta V, Jover E, et al. Soluble st2 induces cardiac fibroblast activation and collagen synthesis via neuropilin-1 [J]. Cells, 2020, 9(7) : 1667.
    [45] [8] 田静, 马英杰, 王鹏, 等. 血管内皮功能障碍及其评估技术 [J]. 中国比较医学杂志, 2023, 33: 130-140. Tian J, Ma Y J, Wang P, et al. Vascular endothelial dysfunction and its functional assessment [J]. Chin J Comp Med, 2023, 33: 130-140.
    [46] [9] Dudley A C, Griffioen A W. Pathological angiogenesis: Mechanisms and therapeutic strategies [J]. Angiogenesis, 2023, 26(3) : 313-347.
    [47] [10] Fang Y, Yang R, Hou Y, et al. Dual-modality imaging of angiogenesis in unstable atherosclerotic plaques with VEGFR2-targeted upconversion nanoprobes in vivo [J]. Mol Imaging Biol, 2022, 24(5) : 721-731.
    [48] [11] Yan D, Zhang D, Lu L, et al. Vascular endothelial growth factor-modified macrophages accelerate reendothelialization and attenuate neointima formation after arterial injury in atherosclerosis-prone mice [J]. J Cell Biochem, 2019, 120(6) : 10652-10661.
    [49] [12] Kuppuswamy S, Annex B H, Ganta V C. Targeting anti-angiogenic VEGF165b-VEGFR1 signaling promotes nitric oxide independent therapeutic angiogenesis in preclinical peripheral artery disease models [J]. Cells, 2022, 11(17) : 2676.
    [50] [13] Pellet-Many C, Frankel P, Jia H, et al. Neuropilins: Structure, function and role in disease [J]. Biochem J, 2008, 411(2) : 211-226.
    [51] [14] Ko J H, Kwon H S, Kim B, et al. Preclinical efficacy and safety of an anti-human VEGFA and anti-human NRP1 dual-targeting bispecific antibody (IDB0076) [J]. Biomolecules, 2020, 10(6) : 919.
    [52] [15] Mota F, Yelland T, Hutton J A, et al. Peptides derived from vascular endothelial growth factor b show potent binding to neuropilin-1 [J]. Chembiochem, 2022, 23(1) : e202100463.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:25
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-28
  • 最后修改日期:2025-02-20
  • 录用日期:2025-04-09
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭