SHP2在结直肠癌发展中的作用及其作为治疗靶点的研究进展
作者:
作者单位:

河北北方学院附属第一医院

基金项目:

] 2022年河北省自然科学精准医学联合(编号:H2022405033)


Research progress of SHP2 in colitis associated colon cancer and colorectal cancer
Author:
Affiliation:

The First Affiliated Hospital of Hebei North University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • | | | |
  • 文章评论
    摘要:

    【】 结直肠癌(CRC)作为威胁人类生命最常见的恶性肿瘤之一,其严重影响着患者的生活质量。近年来,SHP2成为癌症领域中备受关注的焦点,已经被证实与结直肠癌有着密切的关系。SHP2,由PTPN11基因编码,是一种非受体酪氨酸激酶,在人体各组织和细胞中普遍存在。现有研究显示,SHP2在调控CRC及结肠炎相关性结肠癌(CAC)中扮演关键角色。并随着SHP2变构抑制剂的出现,SHP2成为了CRC患者新的潜在的治疗靶点。本文主要针对SHP2的结构及其在CRC和CAC中的影响进行综述。

    Abstract:

    【】Colorectal cancer (CRC), as one of the most common malignant tumors that threaten human life, seriously affects the quality of life of patients. In recent years, SHP2 has become a hot topic in the field of cancer and has been proven to have a close relationship with colorectal cancer. SHP2, Encoded by the PTPN11 gene, it is a non receptor tyrosine kinase commonly present in various tissues and cells of the human body. Existing research shows that, SHP2 plays a crucial role in regulating CRC and colitis associated colon cancer (CAC). And with the emergence of SHP2 allosteric inhibitors, SHP2 has become a new potential therapeutic target for CRC patients. This article mainly reviews the structure of SHP2 and its impact in CRC and CAC.

    参考文献
    [1] Ying J, Zhou H Y, Liu P, et al. Aspirin inhibited the metastasis of colon cancer cells by inhibiting the expression of toll-like receptor 4 [J]. Cell Biosci, 2018, 8: 1.
    [2] Yuan H, Zhao J, Yang Y, et al. SHP-2 Interacts with CD81 and Regulates the Malignant Evolution of Colorectal Cancer by Inhibiting Epithelial-Mesenchymal Transition [J]. Cancer Manag Res, 2020, 12: 13273-84.
    [3] Shah S C, Itzkowitz S H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management [J]. Gastroenterology, 2022, 162(3): 715-30.e3.
    [4] Rajam?ki K, Taira A, Katainen R, et al. Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer [J]. Gastroenterology, 2021, 161(2): 592-607.
    [5] Gené M, Cuatrecasas M, Amat I, et al. Alterations in p53, Microsatellite Stability and Lack of MUC5AC Expression as Molecular Features of Colorectal Carcinoma Associated with Inflammatory Bowel Disease [J]. Int J Mol Sci, 2023, 24(10).
    [6] Quaglio A E V, Grillo T G, De Oliveira E C S, et al. Gut microbiota, inflammatory bowel disease and colorectal cancer [J]. World J Gastroenterol, 2022, 28(30): 4053-60.
    [7] Martin E, Agazie Y M. SHP2 Potentiates the Oncogenic Activity of β-Catenin to Promote Triple-Negative Breast Cancer [J]. Mol Cancer Res, 2021, 19(11): 1946-56.
    [8] Mainardi S, Mulero-Sánchez A, Prahallad A, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo [J]. Nat Med, 2018, 24(7): 961-7.
    [9] Lee Y J, Song H, Yoon Y J, et al. Ethacrynic acid inhibits STAT3 activity through the modulation of SHP2 and PTP1B tyrosine phosphatases in DU145 prostate carcinoma cells [J]. Biochem Pharmacol, 2020, 175: 113920.
    [10] Wang Q, Zhao W C, Fu X Q, et al. Exploring the Distinct Binding and Activation Mechanisms for Different CagA Oncoproteins and SHP2 by Molecular Dynamics Simulations [J]. Molecules, 2021, 26(4).
    [11] Song Y, Zhao M, Zhang H, et al. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials [J]. Pharmacol Ther, 2022, 230: 107966.
    [12] Paccoud R, Saint-Laurent C, Piccolo E, et al. SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations [J]. Sci Transl Med, 2021, 13(591).
    [13] Xiao P, Zhang H, Zhang Y, et al. Phosphatase Shp2 exacerbates intestinal inflammation by disrupting macrophage responsiveness to interleukin-10 [J]. J Exp Med, 2019, 216(2): 337-49.
    [14] Wu X, Guan S, Lu Y, et al. Macrophage-derived SHP-2 inhibits the metastasis of colorectal cancer via Tie2-PI3K signals [J]. Oncol Res, 2023, 31(2): 125-39.
    [15] Chan R J, Feng G S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase [J]. Blood, 2007, 109(3): 862-7.
    [16] Kanumuri R, Kumar Pasupuleti S, Burns S S, et al. Targeting SHP2 phosphatase in hematological malignancies [J]. Expert Opin Ther Targets, 2022, 26(4): 319-32.
    [17] Tang C, Luo H, Luo D, et al. Src homology phosphotyrosyl phosphatase 2 mediates cisplatin-related drug resistance by inhibiting apoptosis and activating the Ras/PI3K/Akt1/survivin pathway in lung cancer cells [J]. Oncol Rep, 2018, 39(2): 611-8.
    [18] Meng F, Zhao X, Zhang S. SHP-2 phosphatase promotes cervical cancer cell proliferation through inhibiting interferon-β production [J]. J Obstet Gynaecol Res, 2013, 39(1): 272-9.
    [19] Hu Z, Li J, Gao Q, et al. SHP2 overexpression enhances the invasion and metastasis of ovarian cancer in vitro and in vivo [J]. Onco Targets Ther, 2017, 10: 3881-91.
    [20] Bard-Chapeau E A, Li S, Ding J, et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis [J]. Cancer Cell, 2011, 19(5): 629-39.
    [21] Li Y, Yuan Y, Zhang F, et al. Therapeutic Suppression of FAK-AKT Signaling Overcomes Resistance to SHP2 Inhibition in Colorectal Carcinoma [J]. Front Pharmacol, 2021, 12: 739501.
    [22] Zhao M, Guo W, Wu Y, et al. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade [J]. Acta Pharm Sin B, 2019, 9(2): 304-15.
    [23] Zhou B, Yuan Y, Zhang S, et al. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract [J]. Front Immunol, 2020, 11: 575.
    [24] Coulombe G, Langlois A, De Palma G, et al. SHP-2 Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Host-Microbiota Homeostasis [J]. J Cell Physiol, 2016, 231(11): 2529-40.
    [25] Coulombe G, Leblanc C, Cagnol S, et al. Epithelial tyrosine phosphatase SHP-2 protects against intestinal inflammation in mice [J]. Mol Cell Biol, 2013, 33(11): 2275-84.
    [26] Xu D, Qu C K. Protein tyrosine phosphatases in the JAK/STAT pathway [J]. Front Biosci, 2008, 13: 4925-32.
    [27] Zhang W, Chan R J, Chen H, et al. Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia [J]. J Biol Chem, 2009, 284(33): 22353-63.
    [28] Gagné-Sansfacon J, Langlois A, Langlois M J, et al. The tyrosine phosphatase Shp-2 confers resistance to colonic inflammation by driving goblet cell function and crypt regeneration [J]. J Pathol, 2019, 247(1): 135-46.
    [29] Chang C J, Lin C F, Lee C H, et al. Overcoming interferon (IFN)-γ resistance ameliorates transforming growth factor (TGF)-β-mediated lung fibroblast-to-myofibroblast transition and bleomycin-induced pulmonary fibrosis [J]. Biochem Pharmacol, 2021, 183: 114356.
    [30] Liu W, Guo W, Shen L, et al. T lymphocyte SHP2-deficiency triggers anti-tumor immunity to inhibit colitis-associated cancer in mice [J]. Oncotarget, 2017, 8(5): 7586-97.
    [31] Kerr D L, Haderk F, Bivona T G. Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment [J]. Curr Opin Chem Biol, 2021, 62: 1-12.
    [32] Zhang L, Yang Z, Ma A, et al. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma [J]. Hepatology, 2014, 59(1): 178-89.
    [33] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer [J]. Sci Rep, 2017, 7(1): 17597.
    [34] Chen X, Fu X, Zhao W, et al. Loss of tyrosine phosphatase SHP2 activity promotes growth of colorectal carcinoma HCT-116 cells [J]. Signal Transduct Target Ther, 2020, 5(1): 83.
    [35] Pegtel D M, Gould S J. Exosomes [J]. Annu Rev Biochem, 2019, 88: 487-514.
    [36] Li Z, Xi J, Li B, et al. SHP-2-induced M2 polarization of tumor associated macrophages via IL-4 regulate colorectal cancer progression [J]. Front Oncol, 2023, 13: 1027575.
    [37] Xu Z, Guo C, Ye Q, et al. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization [J]. Nat Commun, 2021, 12(1): 6310.
    [38] Patel S A, Nilsson M B, Le X, et al. Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy [J]. Clin Cancer Res, 2023, 29(1): 30-9.
    [39] Kroll J, Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells [J]. J Biol Chem, 1997, 272(51): 32521-7.
    [40] Mannell H, Krotz F. SHP-2 regulates growth factor dependent vascular signalling and function [J]. Mini Rev Med Chem, 2014, 14(6): 471-83.
    [41] Kim K, Kim I K, Yang J M, et al. SoxF Transcription Factors Are Positive Feedback Regulators of VEGF Signaling [J]. Circ Res, 2016, 119(7): 839-52.
    [42] Mannell H, Kameritsch P, Beck H, et al. Cx43 Promotes Endothelial Cell Migration and Angiogenesis via the Tyrosine Phosphatase SHP-2 [J]. Int J Mol Sci, 2021, 23(1).
    [43] Hou Q, Huang J, Ayansola H, et al. Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases [J]. Front Immunol, 2020, 11: 623691.
    [44] Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer [J]. J Hematol Oncol, 2020, 13(1): 156.
    [45] Cai J, Huang L, Tang H, et al. Macrophage migration inhibitory factor of Thelazia callipaeda induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway [J]. Faseb j, 2021, 35(9): e21866.
    [46] Wang S, Yao Y, Li H, et al. Tumor-associated macrophages (TAMs) depend on Shp2 for their anti-tumor roles in colorectal cancer [J]. Am J Cancer Res, 2019, 9(9): 1957-69.
    [47] Pal R, Rakshit S, Shanmugam G, et al. Involvement of Xeroderma Pigmentosum Complementation Group G (XPG) in epigenetic regulation of T-Helper (T(H)) cell differentiation during breast cancer [J]. Immunobiology, 2022, 227(5): 152259.
    [48] Li Y, Zhou H, Liu P, et al. SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the CD47/SIRPα axis [J]. J Clin Invest, 2023, 133(4).
    [49] Prahallad A, Heynen G J, Germano G, et al. PTPN11 Is a Central Node in Intrinsic and Acquired Resistance to Targeted Cancer Drugs [J]. Cell Rep, 2015, 12(12): 1978-85.
    [50] Chen H, Libring S, Ruddraraju K V, et al. SHP2 is a multifunctional therapeutic target in drug resistant metastatic breast cancer [J]. Oncogene, 2020, 39(49): 7166-80.
    [51] Sorokin A V, Kanikarla Marie P, Bitner L, et al. Targeting RAS Mutant Colorectal Cancer with Dual Inhibition of MEK and CDK4/6 [J]. Cancer Res, 2022, 82(18): 3335-44.
    [52] LaRochelle J R, Fodor M, Vemulapalli V, et al. Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition [J]. Nat Commun, 2018, 9(1): 4508.
    [53] Pfeiffer A, Franciosa G, Locard-Paulet M, et al. Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD-Driven AML [J]. Cancer Res, 2022, 82(11): 2141-55.
    [54] Ziemke E K, Dosch J S, Maust J D, et al. Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6 [J]. Clin Cancer Res, 2016, 22(2): 405-14.
    [55] Fedele C, Ran H, Diskin B, et al. SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models [J]. Cancer Discov, 2018, 8(10): 1237-49.
    [56] Sun Y, Meyers B A, Czako B, et al. Allosteric SHP2 Inhibitor, IACS-13909, Overcomes EGFR-Dependent and EGFR-Independent Resistance Mechanisms toward Osimertinib [J]. Cancer Res, 2020, 80(21): 4840-53.
    [57] Ebi H, Corcoran R B, Singh A, et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers [J]. J Clin Invest, 2011, 121(11): 4311-21.
    [58] Vitiello P P, Cardone C, Martini G, et al. Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines [J]. J Exp Clin Cancer Res, 2019, 38(1): 41.
    [59] Datta J, Damodaran S, Parks H, et al. Akt Activation Mediates Acquired Resistance to Fibroblast Growth Factor Receptor Inhibitor BGJ398 [J]. Mol Cancer Ther, 2017, 16(4): 614-24.
    [60] Chen Y N, LaMarche M J, Chan H M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases [J]. Nature, 2016, 535(7610): 148-52.
    [61] Sun B, Jensen N R, Chung D, et al. Synergistic effects of SHP2 and PI3K pathway inhibitors in GAB2-overexpressing ovarian cancer [J]. Am J Cancer Res, 2019, 9(1): 145-59.[基金项目] 2022年河北省自然科学精准医学联合基金项目(编号:H2022405033)[作者简介] 张昊(1998-09),男,硕士研究生,研究方向:消化道恶性肿瘤的基础与临床研究。手机号码:18464268092,E-mail:18464268092@163.com。通讯地址:河北省张家口市桥西区长青路12号。[通讯作者] 武雪亮(1984-09),男,博士研究生,研究方向:消化道恶性肿瘤的基础与临床研究。手机号码:15530399696,E-mail:wxlwlk@163.com。通讯地址:河北省张家口市桥西区长青路12号。
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:89
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-01
  • 最后修改日期:2024-09-08
  • 录用日期:2025-01-08
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭