双能量CT成像在动物骨修复评估中的应用价值
作者:
作者单位:

郑州大学第一附属医院

基金项目:

3D打印功能化PEEK支架及其介导巨噬细胞促进骨整合的机制研究(SBGJ202102089)。


The application value of dual energy CT imaging in the evaluation of bone repair
Author:
Affiliation:

The First Affiliated Hospital of Zhengzhou University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    骨缺损修复是骨科领域亟待解决的难题,众多研究者致力于探索更为高效的治疗策略。然而,术后精准的骨修复效果评估也是一个重要环节。随着计算机断层扫描(computed tomography,CT)成像的发展,双能量CT成像在分析骨组织成分以及减少金属伪影方面展现出显著优势。本文就双能量CT成像在动物骨修复评估中的应用价值进行综述。

    Abstract:

    Bone defect repair is an urgent problem to be solved in the field of orthopedics, and numerous researchers are working to develop more effective treatment plans. However, accurate evaluation of bone repair after surgery is an crucial step. With the development of computed tomography (CT) imaging, dual energy CT imaging has shown significant advantages in analyzing bone composition and reducing metal artifacts. This article reviews the application value of dual energy CT imaging in the evaluation of bone repair in animals.

    参考文献
    [1] SALHOTRA A, SHAH H N, LEVI B, et al. Mechanisms of bone development and repair [J]. Nat Rev Mol Cell Biol, 2020, 21(11): 696-711.
    [2] ZHANG J, JIA J, KIM J P, et al. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration [J]. Adv Mater, 2017, 29(17).
    [3] 汤译博, 赵亮, 苏佳灿. 骨折动物模型的研究进展 [J]. 中国骨伤, 2011, 24(01): 91-93.
    [4] BALDWIN P, LI D J, AUSTON D A, et al. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery [J]. J Orthop Trauma, 2019, 33(4): 203-213.
    [5] 朱力鸣, 焦昆, 刘伟, 等. 新型同种异体骨修复骨缺损动物实验研究 [J]. 实验动物科学, 2023, 40(06): 73-77.
    [6] 郭瑛, 吴维敏, 张力军, 等. 一种羊椎体骨缺损动物模型的改良及应用效果观察 [J]. 实验动物科学, 2018, 35(05): 24-29.
    [7] 吴西, 王中琪, 宋慕格, 等. 外泌体对骨组织细胞的影响及应用的研究进展 [J]. 中国比较医学杂志, 2023, 33(06): 108-113.
    [8] YANG X, GAO J, YANG S, et al. Pore size-mediated macrophage M1 to M2 transition affects osseointegration of 3D-printed PEEK scaffolds [J]. Int J Bioprint, 2023, 9(5): 755.
    [9] MUSSMANN B, OVERGAARD S, TORFING T, et al. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT [J]. J Orthop Res, 2017, 35(7): 1470-1477.
    [10] MCCOLLOUGH C H, LENG S, YU L, et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications [J]. Radiology, 2015, 276(3): 637-653.
    [11] 阎晓斌, 刘伟, 吕杰. X线检查临床应用的研究 [J]. 医学信息, 2019, 32(17): 50-52.
    [12] QIN X, RAJ R M, LIAO X F, et al. Using rigidly fixed autogenous tooth graft to repair bone defect: an animal model [J]. Dent Traumatol, 2014, 30(5): 380-384.
    [13] 姚彪, 钱卫庆, 尹宏. 新型α-半水硫酸钙/双相生物陶瓷人工骨修复兔桡骨骨缺损的X射线评估 [J]. 中国组织工程研究, 2014, 18(47): 7550-7555.
    [14] 阳懿, 赵承初, 马征, 等. 两种骨修复材料修复兔颅骨骨缺损:X射线评估效果 [J]. 中国组织工程研究与临床康复, 2010, 14(34): 6283-6286.
    [15] 牛恒立, 赵国彪, 马中兴, 等. 接骨丹对大鼠骨缺损愈合疗效的影像学研究 [J]. 西部中医药, 2016, 29(05): 124-126.
    [16] 赵泽庆, 潘慧, 张莉, 等. 超声评估骨龄研究现状及临床应用前景 [J]. 协和医学杂志, 2024, 15(02): 400-405.
    [17] PROTOPAPPAS V C, VAVVA M G, FOTIADIS D I, et al. Ultrasonic monitoring of bone fracture healing [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55(6): 1243-1255.
    [18] XU K, TA D, HE R, et al. Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments [J]. Ultrasound Med Biol, 2014, 40(4): 817-827.
    [19] XU H, OTHMAN S F, MAGIN R L. Monitoring tissue engineering using magnetic resonance imaging [J]. J Biosci Bioeng, 2008, 106(6): 515-527.
    [20] WASHBURN N R, WEIR M, ANDERSON P, et al. Bone formation in polymeric scaffolds evaluated by proton magnetic resonance microscopy and X-ray microtomography [J]. J Biomed Mater Res A, 2004, 69(4): 738-747.
    [21] HARTMAN E H, PIKKEMAAT J A, VEHOF J W, et al. In vivo magnetic resonance imaging explorative study of ectopic bone formation in the rat [J]. Tissue Eng, 2002, 8(6): 1029-1036.
    [22] RAHMIM A, ZAIDI H. PET versus SPECT: strengths, limitations and challenges [J]. Nucl Med Commun, 2008, 29(3): 193-207.
    [23] LIN C Y, CHANG Y H, KAO C Y, et al. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors [J]. Biomaterials, 2012, 33(14): 3682-3692.
    [24] VAN DE WATERING F C, MOLKENBOER-KUENEN J D, BOERMAN O C, et al. Differential loading methods for BMP-2 within injectable calcium phosphate cement [J]. J Control Release, 2012, 164(3): 283-290.
    [25] RITMAN E L. Small-animal CT - Its Difference from, and Impact on, Clinical CT [J]. Nucl Instrum Methods Phys Res A, 2007, 580(2): 968-970.
    [26] 李淑桢, 戴文敬, 喻青青, 等. Micro-CT在实验动物疾病模型中的应用 [J]. 中国实验动物学报, 2024, 32(05): 676-682.
    [27] MORGAN E F, MASON Z D, CHIEN K B, et al. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function [J]. Bone, 2009, 44(2): 335-344.
    [28] BISSINGER O, KIRSCHKE J S, PROBST F A, et al. Micro-CT vs. Whole Body Multirow Detector CT for Analysing Bone Regeneration in an Animal Model [J]. PLoS One, 2016, 11(11): e0166540.
    [29] BECKER K, STAUBER M, SCHWARZ F, et al. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing [J]. Comput Med Imaging Graph, 2015, 44: 62-68.
    [30] 孙莲莲, 刘永超, 王志兴. 同步辐射成像比较两种不同骨修复材料修复兔股骨缺损的效果 [J]. 中国组织工程研究, 2023, 27(21): 3343-3348.
    [31] ?ZER T, GULIYEVA V, AKTA? A, et al. Effects of a locally administered risedronate/autogenous bone graft combination on bone healing in a critical-size rabbit defect model [J]. J Orthop Surg Res, 2023, 18(1): 88.
    [32] 耿海霞, 郭秀娟, 钱君荣, 等. 羟基磷灰石/凝胶纳米复合物修复兔颅骨缺损的影像学评估 [J]. 中国组织工程研究, 2014, 18(34): 5413-5417.
    [33] CHENG X, YUAN H, CHENG J, et al. Chinese expert consensus on the diagnosis of osteoporosis by imaging and bone mineral density [J]. Quant Imaging Med Surg, 2020, 10(10): 2066-2077.
    [34] WICHMANN J L, BOOZ C, WESARG S, et al. Dual-energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine [J]. Radiology, 2014, 271(3): 778-784.
    [35] HAN D, SIEBERS J V, WILLIAMSON J F. A linear, separable two-parameter model for dual energy CT imaging of proton stopping power computation [J]. Med Phys, 2016, 43(1): 600.
    [36] WILLEMINK M J, PERSSON M, POURMORTEZA A, et al. Photon-counting CT: Technical Principles and Clinical Prospects [J]. Radiology, 2018, 289(2): 293-312.
    [37] PESSIS E, SVERZUT J M, CAMPAGNA R, et al. Reduction of Metal Artifact with Dual-Energy CT: Virtual Monospectral Imaging with Fast Kilovoltage Switching and Metal Artifact Reduction Software [J]. Semin Musculoskelet Radiol, 2015, 19(5): 446-455.
    [38] WANG M, WU Y, ZHOU Y, et al. The new fast kilovoltage-switching dual-energy computed tomography for measuring bone mineral density [J]. Quant Imaging Med Surg, 2023, 13(2): 801-811.
    [39] SU D, WU Y, YANG S, et al. Dual-energy computed tomography and micro-computed tomography for assessing bone regeneration in a rabbit tibia model [J]. Sci Rep, 2024, 14(1): 5967.
    [40] WAN D, CHEN D, LI K, et al. Gold Nanoparticles as a Potential Cellular Probe for Tracking of Stem Cells in Bone Regeneration Using Dual-Energy Computed Tomography [J]. ACS Appl Mater Interfaces, 2016, 8(47): 32241-32249.
    [41] BREDELLA M A, DALEY S M, KALRA M K, et al. Marrow Adipose Tissue Quantification of the Lumbar Spine by Using Dual-Energy CT and Single-Voxel (1)H MR Spectroscopy: A Feasibility Study [J]. Radiology, 2015, 277(1): 230-235.
    [42] ARENTSEN L, HANSEN K E, YAGI M, et al. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density [J]. J Bone Miner Metab, 2017, 35(4): 428-436.
    [43] 张源, 高冰, 黄世豪, 等. 优化扫描参数宝石能谱CT测量腰椎骨密度临床效果评价 [J]. 中国骨质疏松杂志, 2021, 27(03): 333-336.
    [44] 胡志, 余晓锷, 康立丽, 等. 基于一种体模对CT能谱技术的质量检测 [J]. 中国医学物理学杂志, 2018, 35(01): 54-59.
    [45] ARAN S, DAFTARI BESHELI L, KARCAALTINCABA M, et al. Applications of dual-energy CT in emergency radiology [J]. AJR Am J Roentgenol, 2014, 202(4): W314-324.
    [46] HAKVOORT E T, WELLENBERG R H H, STREEKSTRA G J. Quantifying near metal visibility using dual energy computed tomography and iterative metal artifact reduction in a fracture phantom [J]. Phys Med, 2020, 69: 9-18.
    [47] 张冉旭. 骨科金属伪影减少算法及虚拟单能量成像技术在CT检查中的应用价值研究 [D], 2022.
    [48] 孙彤彤, 黄熙菎, 罗腾龙, 等. 双层探测器光谱CT虚拟单能量成像联合去除植入物金属伪影用于减少置换髋关节假体金属伪影 [J]. 中国医学影像技术, 2023, 39(07): 1084-1088.
    [49] 朱小忠, 朱自淘, 董馥闻. 宝石能谱CT单能量结合MARs在去金属伪影中的应用 [J]. 影像研究与医学应用, 2023, 7(05): 27-29.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:79
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-10-21
  • 录用日期:2024-10-30
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭