铁死亡介导急性白血病的机制研究进展
作者单位:

江西中医药大学


Research progress on the mechanism of acute leukemia mediated by ferroptosis
Author:
Affiliation:

Jiangxi University of Traditional Chinese Medicine

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [84]
  • | | | |
  • 文章评论
    摘要:

    铁死亡主要与铁、脂质和氨基酸等代谢途径有关,这些途径有助于活性氧的产生,使线粒体损伤,致使细胞死亡。近年来,铁死亡在肿瘤发展过程中被认为是一种关键的调控机制,在急性白血病中也不例外。该综述旨在对铁死亡及其在急性白血病发生发展中的作用机制进行综述,探讨铁死亡是如何影响急性白血病细胞的增殖,为未来针对白血病的研究以及治疗提供新的思路。

    Abstract:

    Ferroptosis is mainly related to iron, lipid and amino acid metabolic pathways, which contribute to the production of reactive oxygen species, mitochondrial damage and finally cell death. Ferroptosis primarily involves iron, lipid, and amino acid-related metabolic pathways that contribute to the production of lipid reactive oxygen species. In recent years, ferroptosis has been recognized as a key regulatory mechanism during tumor development, and it is no exception in acute leukemia. The purpose of this article is to review ferroptosis and its mechanism in the development of acute leukemia, and to explore how ferroptosis affects acute leukemia,which provides new ideas for future research and treatment of leukemia.

    参考文献
    [1] KUEK V, HUGHES AM, KOTECHA RS, et al. Therapeutic Targeting of the Leukaemia Microenvironment[J]. Int J Mol Sci, 2021, 22(13):6888.
    [2] He H, Qiao Y, Zhou Q, et al. Iron Overload Damages the Endothelial Mitochondria via the ROS/ADMA/DDAHII/eNOS/NO Pathway[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019:1-19.
    [3] 许兴文,贾瑾堂.Sulfiredoxin-1对肝癌细胞铁死亡的影响及其机制研究[J].肝脏, 2024, 29(4):408-413+418.XU X W, JIA J T. The effect and mechanism of Sulfiredoxin-1 on ferroptosis in hepatocellular carcinoma cells[J]. Chinese Hepatology, 2024, 29(4):408-413+418.
    [4] 何华星,刘璐琳,刘颖茵,等.丁酸钠与索拉非尼可能通过YAP诱导铁死亡协同抑制肝癌细胞增殖[J].南方医科大学学报, 2024, 44(7):1425-1430.HE H X, LIU L L, LIU Y Y, et al. Sodium butyrate and sorafenib synergistically inhibit hepatocellular carcinoma cells possibly by inducing ferroptosis through inhibiting YAP[J]. Journal of Southern Medical University, 2024, 44(7):1425-1430.
    [5] 罗梦玉,官鹭,卢山,等.基于铁死亡途径的五味子乙素抗肝癌细胞增殖机制及其微乳增效作用研究[J].中草药, 2024, 55(13):4411-4422.LUO M Y, GUAN L, LU S, et al. Mechanism of schisandrin B on inhibiting proliferation of hepatocellular carcinoma cells based on ferroptosis pathway and its microemulsion enhancing effect[J]. Chinese Traditional and Herbal Drugs, 2024, 55(13):4411-4422.
    [6] LEI G, ZHANG Y, HONG T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021, 40(20):3533-3547.
    [7] HUANG C L,YANG M C,DENG J, et al. Upregulation and activation of p53 by erastin-induced reactive oxygen species contribute to cytotoxic and cytostatic effects in A549 lung cancer cells[J]. Oncol Rep, 2018, 40(4):2363-2370.
    [8] HOU W, XIE Y, SONG X, et al. Autophagypromotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8):1425-1428.
    [9] WANG X, CHEN Y, WANG X, et al. Stem Cell Factor SOX2 Confers Ferroptosis Resistance in Lung Cancer via Upregulation of SLC7A11[J]. Cancer Res, 2021, 81(20):5217-5229.
    [10] JI X, QIAN J, RAHMAN SMJ, et al. xCT (SLC7A11)-mediated metabolic reprogrammingpromotes non-small cell lung cancer progression[J]. Oncogene, 2018, 37(36):5007-5019.
    [11] 李璐璐,贾红燕.铁死亡机制及其在乳腺癌中的研究进展[J].现代医学, 2023, 51(7):1018-1023.Li L L, JIA H Y. Mechanism of ferroptosis and its progress in breast cancer[J]. Modern Medical Journal, 2023, 51(7):1018-1023.
    [12] DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
    [13] TAN S, SCHUBERT D, MAHER P. Oxytosis: A novel form of programmed cell death[J]. Curr Top Med Chem, 2001, 1(6):497-506.
    [14] WANG H, CHENG Y, MAO C, et al. Emerging mechanisms and targeted therapy of ferroptosis in cancer[J]. Mol Ther, 2021, 29(7):2185-2208.
    [15] TANG X, WANG Y, ZHU Y, et al. Basic mechanisms and novel potential therapeutictargets for ferroptosis in acute myeloid leukemia[J]. Ann Hematol, 2023, 2(8):1985-1999.
    [16] SUN S, SHEN J, JIANG J, et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics[J]. Signal Transduct Target Ther, 2023, 8(1):372.
    [17] STEELE TM, FRAZER DM, ANDERSON GJ. Systemic regulation of intestinal iron absorption[J]. IUBMB Life, 2005,57(7):499-503.
    [18] FRAZER DM, ANDERSON GJ. The regulation of iron transport[J]. Biofactors, 2014,40(2):206-214.
    [19] 姜懿洋,刘帅,张静涛,等.中医药通过诱导铁死亡治疗肺癌的研究进展[J].中医药学报, 2024, 52(3):100-108.JIANG Y Y, LIU S, ZHANG J T, et al. Progress in the Treatment of Lung Cancer by Iron Death Induced by Traditional Chinese Medicine[J]. Acta Chinese Medicine and Pharmacology, 2024, 52(3):100-108.
    [20] 董佩,袁普卫,康武林,等.铁死亡相关肌肉骨骼系统疾病的概述及中医药干预进展[J].中草药, 2023, 54(21):7202-7212.DONG P, YUAN P W, KANG W L, et al. Overview of ferroptosis-related musculoskeletal system diseases and progress of traditional Chinese medicine intervention[J]. Chinese Traditional and Herbal Drugs, 2023, 54(21):7202-7212.
    [21] JAIN C, SHAH YM. PCBP1 is essential for proper iron absorption[J]. Blood, 2023,142(19):1585-1587.
    [22] RUIZ-DE-ANGULO A, BILBAO-ASENSIO M, CRONIN J, et al. Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapyand Immunotherapy-Promoted Tumor Ferroptosis[J]. iScience, 2020, 23(9):101499.
    [23] DODSON M, CASTRO-PORTUGUEZ R, ZHANG DD. NRF2 plays a critical role in mitigating lipid peroxidation anderroptosis[J]. Redox Biol, 2019,23:101107.
    [24] FUHRMANN DC, MONDORF A, BEIFU? J, et al. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis[J]. Redox Biol, 2020,36:101670.
    [25] INGOLD I, BERNDT C, SCHMITT S, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis[J]. Cell, 2018, 172(3):409-422.e21.
    [26] DENG X, CHU W, ZHANG H, et al. Nrf2 and Ferroptosis: A New Research Direction for Ischemic Stroke[J]. Cell Mol Neurobiol, 2023, 43(8):3885-3896.
    [27] YU X, WANG Y, TAN J, et al. Inhibition of NRF2 enhances the acute myeloid leukemiacell death induced by venetoclax via the ferroptosis pathway[J]. Cell Death Discov, 2024, 10(1):35.
    [28] 胡舒宁,邹心如,方译萱,等.Nrf2与铁死亡在肿瘤耐药中的研究进展[J].中国肺癌杂志, 2023, 26(10):765-773.HU S N, ZOU X R, FANG Y X, et al. Research Progress of Nrf2 and Ferroptosis in Tumor Drug Resistance[J]. Chinese Journal of Lung Cancer, 2023, 26(10):765-773.
    [29] TAN S,KONG Y, XIAN Y, et al. The Mechanisms of Ferroptosis and the Applications in Tumor Treatment: Enemies or Friends?[J] Front Mol Biosci, 2022, 9:938677.
    [30] XU R, WANG W, ZHANG W. Ferroptosis and the bidirectional regulatory factor p53[J]. Cell Death Discov, 2023, 9(1):197.
    [31] STOCKWELL BR, FRIEDMANN ANGELI JP, BAYIR H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease[J]. Cell, 2017, 171(2):273-285.
    [32] JIANG X, STOCKWELL BR, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4):266-282.
    [33] INGOLD I, BERNDT C, SCHMITT S, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis[J]. Cell, 2018, 172(3):409-422.e21.
    [34] SHIN CS, MISHRA P, WATROUS JD, et al. The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility[J]. Nat Commun, 2017, 8:15074-15085.
    [35] URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: The role of GSH and GPX4[J]. Free Radic Biol Med, 2020, 152:175-185.
    [36] XIE Y, KANG R, KLIONSKY DJ, et al. GPX4 in cell death, autophagy, and disease[J]. Autophagy, 2023, 19(10):2621-2638.
    [37] LI C, DENG X, ZHANG W, et al. Novel Allosteric Activators for Ferroptosis Regulator Glutathione Peroxidase 4[J]. J Med Chem, 2019, 62(1):266-275.
    [38] TABNAK P, HAJIESMAILPOOR Z, SORANEH S. Ferroptosis in Lung Cancer: FromMolecular Mechanisms to Prognostiand Therapeutic Opportunities[J]. Front Oncol, 2021, 11:792827.
    [39] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62.
    [40] PONTEL LB, BUENO-COSTA A, MORELLATO AE, et al. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing[J]. Redox Biol, 2022, 55:102408.
    [41] VAGO L, GOJO I. Immune escape and immunotherapy of acute myeloid leukemia[J]. J Clin Invest, 2020, 130(4):1552-1564.
    [42] LI T, LIN T, ZHU J,et al. Prognostic and therapeutic implications of iron-related cell death pathways in acute myeloidleukemia[J]. Front Oncol, 2023, 13:1222098.
    [43] ANGELI JPF, SHAH R, PRATT DA, et al. Ferroptosis Inhibition: Mechanisms and Opportunities[J]. Trends Pharmacol Sci,2017, 38(5):489-498.
    [44] WEBER S, PARMON A, KURRLE N, et al. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia[J]. Front Immunol, 2021, 11:627662.
    [45] MLECZKO-SANECKA K, SILVESTRI L. Cell-type-specific insights into iron regulatory processes[J]. Am J Hematol, 2021, 96(1):110-127.
    [46] HILO A, SHAHINNIA F, DRUEGE U, et al. A specific role of iron in promoting meristematic cell division during adventitious root formation[J]. J Exp Bot, 2017, 68(15):4233-4247.
    [47] DU J, WANG T, LI Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131:356-369.
    [48] GRIGNANO E, CANTERO-AGUILAR L, TUERDI Z, et al. Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: links to iron metabolism and metallothionein[J]. Cell Death Discov, 2023, 9(1):97.
    [49] PANIERI E, BUHA A, TELKOPARAN-AKILLILAR P, et al. Potential Applications of NRF2 Modulators in Cancer Therapy[J]. Antioxidants (Basel), 2020, 9(3):193.
    [50] YU X, WANG Y, TAN J, et al. Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway[J]. Cell Death Discov, 2024, 10(1):35.
    [51] GRIGNANO E, BIRSEN R, CHAPUIS N, et al. From Iron Chelation to Overload as a Therapeutic Strategy to InduceFerroptosis in Leukemic Cells[J]. Front Oncol, 2020,10:586530.
    [52] WEN Q, LIU J, KANG R, et al. The release and activity of HMGB1 in ferroptosis[J]. Biochem Biophys Res Commun, 2019, 510(2):278-283.
    [53] CHEN X, YU C, KANG R, et al. Cellular degradation systemsin ferroptosis[J]. Cell Death Differ, 2021, 28(4):1135-1148.
    [54] YE F, CHAI W, XIE M, et al. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRASQ61LScells[J]. Am J Cancer Res, 2019, 9(4):730-739.
    [55] SHARMA A, FLORA SJS. Positive and Negative Regulation of Ferroptosis and Its Role in Maintaining Metabolic and Redox Homeostasis[J]. Oxid Med Cell Longev, 2021, 2021:9074206.
    [56] ZHANG H, SUN C, SUN Q, et al. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies[J].Front Mol Biosci, 2023, 10:1275774.
    [57] Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(49):31189-31197.S
    [58] SABATIER M, BIRSEN R, LAUTURE L, et al. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia[J]. Cancer Discov, 2023, 13(7):1720-1747.
    [59] YUSUF RZ, SAEZ B, SHARDA A, et al. Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers[J]. Blood, 2020, 136(11):1303-1316.
    [60] CHEN W C, WANG C Y, HUNG Y H, et al. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer[J]. PLoS One, 2016, 11(5):e0155660.
    [61] 程霖,金鑫,卢文艺,等. RSL3诱导急性白血病细胞株MOLM13及其耐药细胞株发生铁死亡的作用及相关机制研究[J]. 中国实验血液学杂志, 2021, 29(4):1109-1118.CHENG L, JIN X, LU W Y, et al. Effect and Involved Mechanism of RSL3-induced Ferroptosis in Acute Leukemia Cells MOLM13 and Drug-resistant Cell Lines[J]. Journal of Experimental Hematology, 2021, 29(4):1109-1118.
    [62] BIRSEN R, LARRUE C, DECROOCQ J, et al.APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica[J]. 2022, 107(2):403-416.
    [63] LIU J, GAO W, SHENG Y, et al. Resveratrol drives ferroptosis of acute myeloid leukemia cells through Hsa-miR-335-5p/NFS1/ GPX4 pathwayin a ROS-dependent manner[J].Cell Mol Biol (Noisy-le-grand), 2023, 69(7):131-137.
    [64] ZHOU X, ZHANG D, LEI J, et al. Polyphyllin I induces rapid ferroptosis in acute myeloid leukemia through simultaneous targeting PI3K/SREBP-1/SCD1axis and triggering of lipid peroxidation[J]. J Nat Med, 2024, 78(3):618-632.
    [65] WANG Z, CHEN X, LIU N, et al. A Nuclear Long Non-Coding RNA LINC00618 Accelerates Ferroptosis in a Manner Dependent upon Apoptosis[J]. Mol Ther, 2021,29(1):263-274.
    [66] BALIHODZIC A, PRINZ F, DENGLER MA, et al. Non-coding RNAs and ferroptosis:potential implications for cancer therapy[J]. Cell Death Differ, 2022, 29(6):1094-1106.
    [67] DONG L H, HUANG J J, ZU P, et al. CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia[J]. Environ Toxicol, 2021, 36(7):1288-1302.
    [68] 陈霞,雷小英,管贤敏,等.CCCG-ALL-2015方案治疗儿童急性淋巴细胞白血病复发的危险因素分析[J].中国当代儿科杂志, 2024, 26(7):701-707.CHEN X, LEI X Y, GUAN X M, et al. Risk factors for recurrence of childhood acute lymphoblastic leukemia after treatment with the Chinese Children''s Cancer Group ALL-2015 protocol[J]. Chinese Journal of Contemporary Pediatrics, 2024, 26(7):701-707.
    [69] COCCARO N, ANELLI L, ZAGARIA A, et al. Next-generation sequencing in acute lymphoblastic leukemia[J]. Int J Mol Sci, 2019,20(12):2929.
    [70] PONTEL LB, BUENO-COSTA A, MORELLATO AE, et al. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing[J]. Redox Biol, 2022, 55:102408.
    [71] TIAN C, ZHENG M, LAN X, et al. Silencing LCN2 enhances RSL3-induced ferroptosis in T cell acute lymphoblastic leukemia[J]. Gene, 2023, 879:147597.
    [72] JIN L, TONG L. PAQR3 inhibits proliferation and aggravates ferroptosis in acute lymphoblastic leukemia through modulation Nrf2 stability[J]. Immun Inflamm Dis, 2021,9(3):827-839.
    [73] LIU Y, WAN Y, JIANG Y, et al. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3):188890.
    [74] D?CHERT J, SCHOENEBERGER H, ROHDE K, et al. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death[J]. Oncotarget, 2016, 7(39):63779-63792.
    [75] HONG Y, ZHANG L, TIAN X, et al. Identification of immune subtypes of Ph-neg B-ALL with ferroptosis related genes and the potential implementationof Sorafenib[J]. BMC Cancer, 2021, 21(1):1331.
    [76] LOU S, HONG H, MAIHESUTI L, et al. Inhibitory effect of hydnocarpin D onT-cellacute lymphoblastic leukemia via induction of autophagy-dependent ferroptosis[J]. Exp Biol Med (Maywood), 2021, 246(13):1541-1553.
    [77] CHEN L,FANG W, LIU J,et al.SPoricoic acid A (PAA) inhibits T-cell acute lymphoblastic leukemia through inducing autophagic cell death and ferroptosis[J].SBiochem Biophys Res Commun, 2022, 608:108–115.
    [78] MBAVENG AT, NOULALA CGT, SAMBA ARM, et al.The alkaloid, soyauxinium chloride, displays remarkable cytotoxic effects towards a panel of cancer cells, inducing apoptosis, ferroptosis and necroptosis[J].SChem Biol Interact, 2021, 333:109334.
    [79] ZHU T, FAN Y.Autophagy Regulates the Sensitivity of Acute Lymphoblastic Leukemia Cells to Ferroptosis Activator by Influencing Iron Homeostasis[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2021, 29(5):1380-1386.
    [80] ZHU H Y, HUANG Z X, CHEN G Q, et al. Typhaneoside prevents acute myeloidleukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy[J]. Biochem Biophys Res Commun, 2019, 516(4):1265-1271.
    [81] LAI X, SUN Y, ZHANG X, et al. Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia[J]. Cells. Front Pharmacol, 2022, 13:897791.
    [82] BAI W, LIU D, CHENG Q, et al. Tetraarsenic tetrasulfide triggers ROS-induced apoptosis and ferroptosis in B-cell acute lymphoblastic leukaemia by targeting HK2[J]. TranslOncol, 2024, 40:101850.
    [83] 朱大诚,刘振帅,吴慧婷,等.川楝子提取物抑制白血病细胞增殖的机制研究[J].中华中医药学刊, 2023, 41(4):4-8+259-261.ZHU D C, LIU Z S, WU H T, et al. Study on Mechanism of Chuanlianzi(Toosendan Fructus) Extract Inhibiting Proliferation of Leukemia Cells[J]. Chinese Archives of Traditional Chinese Medicine, 2023, 41(4):4-8+259-261.
    [84] 罗雅琴,徐瑞荣.雄黄治疗白血病机制研究进展[J].吉林中医药, 2011, 31(7):703-706.LUO Y Q, XU R R. Progress in the mechanism of realgar treatment in leukemia[J]. Jilin Journal of Chinese Medicine, 2011, 31(7):703-706.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:44
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-27
  • 最后修改日期:2025-02-22
  • 录用日期:2025-04-09
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭