EV71通过Caspase-1/IL-1β信号通路诱导BALB/c乳鼠骨骼肌损伤
作者:
作者单位:

1.佳木斯大学临床医学院;2.佳木斯国际旅行卫生保健中心(佳木斯海关口岸门诊部);3.佳木斯大学第一附属医院医学检验科;4.佳木斯大学基础医学院

基金项目:

黑龙江省自然科学基金(LH2023H004);佳木斯大学“东极”研究团队[DJXSTD202405]


EV71 induced skeletal muscle injury in BALB/c lactating mice through the Caspase-1/IL-1β signaling pathway
Author:
Affiliation:

1.Clinical Medicine Department, Jiamusi University;2.Jiamusi International Travel Health Care Center (Jiamusi Customs Port Outpatient Department);3.Jiamusi University, Laboratory Medicine, The first affiliated Hospital of Jiamusi University;4.Basic Medical College of Jiamusi University, Jiamusi University

Fund Project:

Heilongjiang Provincial Natural Science Foundation of China (LH2023H004), "East Pole" Research Team of Jiamusi University [DJXSTD202405].

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | | | |
  • 文章评论
    摘要:

    【】目的? 观察EV71诱导骨骼肌损伤的影响,探讨Caspase-1/IL-1β信号通路在EV71诱导的骨骼肌损伤中的作用机制。方法 ? 将新生1日龄BALB/c乳鼠随机分为三组,正常对照(normal control,NC)组60只、EV71模型组60只、半胱天冬酶( cysteinyl aspartate specific proteinase,Caspase) -1抑制剂(VX765)组15只。正常组及模型组随机分为5天、7天、10天、14天4个亚组,每亚组15只。将25*103μl/kg 的EV71病毒液,腹腔注射到一日龄BALB/c乳鼠体内,连续注射3天。在病毒接种后6h腹腔注射Caspase-1抑制剂VX765(20mg/kg),每天接种,直至取材。造模成功后,记录各组BALB/c乳鼠体质量和疾病评分,苏木素 - 伊红染色(hematoxylin-eosin staining,HE)观察骨骼肌病理损伤,蛋白免疫印迹(Western blotting)和免疫荧光(Immunofluorescence,IF)检测EV71 VP-1(EV71病毒特异性衣壳蛋白)、pro-caspase-1、cleaved-caspase-1、IL-1β、a-SMA、Collegen I蛋白的表达。结果? 与同时间点正常组相比,EV71模型组乳鼠体重减轻,疾病评分升高;EV71模型组乳鼠骨骼肌组织HE染色可见炎性细胞大量浸润、肌束断裂溶解,肌肉组织横截面积减少;Western blot结果显示,EV71模型组乳鼠5d、7d、10d骨骼肌组织匀浆中EV71 VP-1、IL-1β、a-SMA 和Collegen I水平均明显升高(P<0.05);与EV71模型组相比,VX765组乳鼠体质量升高及临床疾病评分降低(P<0.05),Western blot与免疫荧光结果一致显示, Caspase-1抑制剂可以显著降低EV71模型组乳鼠骨骼肌组织匀浆中EV71 VP-1蛋白表达,下调pro-caspase-1、cleaved-caspase-1、IL-1β和Collegen I蛋白水平(P<0.05),抑制caspase-1减弱了EV71病毒对BALB/c乳鼠骨骼肌损伤作用。结论?? EV71可能通过激活 Caspase-1/IL-1信号通路诱导骨骼肌损伤。

    Abstract:

    【】 Objective To observe the effect of EV71-induced skeletal muscle injury and to explore the mechanism of Caspase-1/IL-1β signaling pathway in EV71-induced skeletal muscle injury. Methods The 1-day-old BALB/c suckling mice were randomly divided into three groups: normal group (60 pigs), EV71 model group (60 pigs), and cysteinyl aspartate specific proteinase (Caspase)-1 inhibitor (VX765) group (15 pigs). The normal group and the model group were randomly divided into 4 subgroups: 5, 7, 10 and 14d, with 15 animals in each subgroup. 25*103 μl/kg of EV71 virus solution was intraperitoneally injected into one-day-old BALB/c suckling mice for 3 consecutive days. Caspase-1 inhibitor VX765 (20 mg/kg) was injected intraperitoneally 6 hours after virus inoculation, and inoculated daily until the sample was collected. After successful modeling, the body weight and disease scores of BALB/c suckling mice in each group were recorded, hematoxylin-eosin staining (HE) was used to observe the pathological damage of skeletal muscle, and Western blotting and immunofluorescence (IF) were used to detect EV71 VP-1 (EV71 virus-specific capsid protein), pro-caspase-1, Expression of cleaved-caspase-1, IL-1β, a-SMA, and Collegen I proteins. Results Compared with the normal group at the same time point, the EV71 model group had a reduced body weight and increased disease scores. HE staining of skeletal muscle tissue in suckling mice in the EV71 model group showed a large infiltration of inflammatory cells, muscle fascicle rupture and lysis, and a decrease in the cross-sectional area of muscle tissue. Western blot results showed that the levels of EV71 VP-1, IL-1β, a-SMA and Collegen I in the homogenate of skeletal muscle tissue at 5d, 7d and 10d in the EV71 model group were significantly increased (P<0.05). Compared with the EV71 model group, the body weight and clinical disease score of the VX765 group were increased (P<0.05), and the results of Western blot and immunofluorescence showed that Caspase-1 inhibitor could significantly reduce the expression of EV71 VP-1 protein in the homogenate of skeletal muscle tissue of the EV71 model group, and down-regulate pro-caspase-1, cleaved-caspase-1, IL-1β and Collegen I protein level (P<0.05), inhibition of caspase-1 attenuated the effect of EV71 virus on skeletal muscle injury in BALB/c suckling mice. Conclusion EV71 may induce skeletal muscle injury by activating the Caspase-1/IL-1 signaling pathway.

    参考文献
    1.Cardosa, M.J., et al., Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. Emerg Infect Dis, 2003. 9(4): p. 461-8.
    2.Xing, W., et al., Hand, foot, and mouth disease in China, 2008-12: an epidemiological study. Lancet Infect Dis, 2014. 14(4): p. 308-318.
    3.Zheng, Z.M., et al., Enterovirus 71 isolated from China is serologically similar to the prototype E71 BrCr strain but differs in the 5''-noncoding region. J Med Virol, 1995. 47(2): p. 161-7.
    4.Zhang, Y., et al., An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J, 2010. 7: p. 94.
    5.Kobayashi, N., et al., A Rare Case of Chronic Active Epstein-Barr Virus (EBV) Infection Accompanied by the Infiltration of EBV-infected CD8+ T Cells into the Muscle. J Pediatr Hematol Oncol, 2018. 40(3): p. e171-e175.
    6.Kou, Z., et al., Epidemiological characteristics and spatial-temporal clusters of hand, foot, and mouth disease in Qingdao City, China, 2013-2018. PLoS One, 2020. 15(6): p. e0233914.
    7.Esposito, S. and N. Principi, Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis, 2018. 37(3): p. 391-398.
    8.Peng, Y., et al., Factors related to the mortality risk of severe hand, foot, and mouth diseases (HFMD): a 5-year hospital-based survey in Guangxi, Southern China. BMC Infect Dis, 2023. 23(1): p. 144.
    9.Chang, L.Y., et al., Neurodevelopment and cognition in children after enterovirus 71 infection. N Engl J Med, 2007. 356(12): p. 1226-34.
    10.Yu, P., et al., Histopathological features and distribution of EV71 antigens and SCARB2 in human fatal cases and a mouse model of enterovirus 71 infection. Virus Res, 2014. 189: p. 121-32.
    11.Zhang, H., et al., An infectious clone of enterovirus 71(EV71) that is capable of infecting neonatal immune competent mice without adaptive mutations. Emerg Microbes Infect, 2020. 9(1): p. 427-438.
    12.Chen, C.Y., et al., Acute flaccid paralysis in infants and young children with enterovirus 71 infection: MR imaging findings and clinical correlates. AJNR Am J Neuroradiol, 2001. 22(1): p. 200-5.
    13.Campbell, G.R., et al., SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience, 2021. 24(4): p. 102295.
    14.Miteva, K., et al., Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy. Sci Rep, 2018. 8(1): p. 2820.
    15.Jin, Y., et al., Pathogenesis Study of Enterovirus 71 Using a Novel Human SCARB2 Knock-In Mouse Model. mSphere, 2021. 6(2).
    16.Wang, H. and Y. Li, Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin, 2019. 34(1): p. 9-21.
    17.Plevka, P., et al., Crystal structure of human enterovirus 71. Science, 2012. 336(6086): p. 1274.
    18.Gaudenzio, N., et al., Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest, 2016. 126(10): p. 3981-3998.
    19.Migliorini, P., et al., The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun Rev, 2020. 19(9): p. 102617.
    20.Bonniaud, P., et al., TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol, 2005. 175(8): p. 5390-5.
    21.Dolivo, D., P. Weathers, and T. Dominko, Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B, 2021. 11(2): p. 322-339.
    22.Parola, M. and M. Pinzani, Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med, 2019. 65: p. 37-55.
    23.Sánchez-Duffhues, G., et al., Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J Pathol, 2019. 247(3): p. 333-346.
    24.Li, Y., et al., Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol, 2004. 164(3): p. 1007-19.
    25.He, X., et al., Inflammation and fibrosis during Chlamydia pneumoniae infection is regulated by IL-1 and the NLRP3/ASC inflammasome. J Immunol, 2010. 184(10): p. 5743-54.
    26.Nam, S.A., et al., Autophagy attenuates tubulointerstital fibrosis through regulating transforming growth factor-β and NLRP3 inflammasome signaling pathway. Cell Death Dis, 2019. 10(2): p. 78.
    27.Mulay, S.R., Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int, 2019. 96(1): p. 58-66.
    28.Wang, W., et al., EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex. PLoS Pathog, 2017. 13(1): p. e1006123.
    29.Li, P.L., Cardiovascular pathobiology of inflammasomes: inflammatory machinery and beyond. Antioxid Redox Signal, 2015. 22(13): p. 1079-83.
    30.Wan, Y., et al., Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol, 2018. 833: p. 545-554. [在此处键入]
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:46
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-15
  • 最后修改日期:2025-02-08
  • 录用日期:2025-05-06
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭