黄精多糖通过抑制心肌细胞焦亡改善糖尿病心肌病
作者单位:

1.长春中医药大学;2.长春中医药大学附属第三临床医院

基金项目:

吉林省中医药管理局科技计划项目(2022056)


Zhang Ying1, Xie Lulu2, Zhang Zhaopeng3, Gao Rui1, Wei Xuyang1, Guo Junpeng4?*(1. College of Integrative Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
Author:
Affiliation:

1.Changchun University of Chinese Medicine;2.The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine

Fund Project:

Jilin Provincial Administration of Chinese Medicine Science and Technology Program (grant/award number: 2022056)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    【】 目的 ?探究黄精多糖(Polygonatum sibiricum Polysaccharides, PSP)对糖尿病心肌病(Diabetic cardiomyopathies, DCM)的保护作用及机制。方法? 40只SPF级雄性SD大鼠随机分为正常组、模型组、黄精多糖组和二甲双胍组,高脂喂养四周后腹腔注射链脲佐菌素(streptozotocin, STZ)建立糖尿病动物模型,灌胃给药12周,每两周记录体重、血糖。第16周时通过无创超声心动仪检测心功能;HE、Masson染色评估大鼠心肌组织病理变化及心肌纤维化程度;酶联免疫吸附试验(ELISA)检测大鼠血清白介素-6(interleukin-6,IL-6)、白介素-1β(interleukin-1β,IL-1β)、白介素-18(interleukin-18,IL-18)、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白(LDL)及高密度脂蛋白(HDL)水平;蛋白免疫印迹法(Western blot)检测大鼠心肌组织中纤维化相关蛋白TGF-β1、Smad2 、Collagen-Ⅰ、Collagen-Ⅲ及焦亡相关蛋白NLRP3、ASC、Caspase-1的表达水平。细胞实验通过将H9c2细胞暴露于高糖(40mmol/L)环境以模拟体外DCM模型,CCK-8法检测细胞活力;流式细胞术检测凋亡细胞比率。结果? 与模型组比较,治疗组大鼠血糖、血脂及血清炎症因子水平显著降低(P < 0.05),左室射血分数(EF%)和短轴缩短率(FS%)显著升高(P < 0.05),心功能得到改善;心肌纤维排列较整齐,胶原纤维堆积减少;心肌组织NLRP3、ASC、Caspase-1、Collagen-Ⅰ、Collagen-Ⅲ、TGF-β1及Smad2蛋白表达水平明显降低(P < 0.05)。细胞实验中黄精多糖治疗组提高了高糖诱导的H9c2心肌细胞活力、降低凋亡细胞比例。结论?? 黄精多糖能改善糖尿病大鼠糖脂代谢,保护心功能,延缓心肌纤维化的发生,同时可以提高心肌细胞活力,其作用机制可能与抑制细胞焦亡从而延缓心室重构有关。

    Abstract:

    【】Objective To investigate the protective effect and mechanism of Polygonatum sibiricum Polysaccharides (PSP) on Diabetic cardiomyopathies (DCM). Methods Forty SPF-grade male SD rats were randomly divided into normal group, model group, PSP group and metformin group. After four weeks of high-fat feeding, streptozotocin (STZ) was intraperitoneally injected to establish diabetes mellitus animal model, and the drug was administered by gavage for 12 weeks, and the body weights and blood glucose were recorded every fortnight. At the 16th week, cardiac function was detected by non-invasive echocardiography; myocardial histopathological changes and the degree of myocardial fibrosis were assessed by HE and Masson staining; serum interleukin-6 (interleukin-6,IL-6), interleukin-1β (interleukin-1β,IL-1β), Interleukin-18 (IL-18), tumour necrosis factor-α (TNF-α), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were detected by enzyme-linked immunosorbent assay (ELISA); The expression levels of fibrosis-related proteins TGF-β1, Smad2, Collagen-Ⅰ, Collagen-Ⅲ and pyroptosis-related proteins NLRP3, ASC and Caspase-1 were detected in rat myocardial tissues by protein immunoblotting (Western blot). Cellular experiments were performed by exposing H9c2 cells to high glucose (40 mmol/L) to mimic the in vitro DCM model, and cell viability was detected by CCK-8 assay; apoptotic cell ratio was detected by flow cytometry. Results Compared with the model group, rats in the treatment group had significantly lower blood glucose, lipid, and serum inflammatory factor levels (P < 0.05), significantly higher Ejection fraction(EF% )and fractional shortening(FS%) values (P < 0.05), and improved cardiac function; myocardial fibers were better aligned, and collagen fiber accumulation was reduced; and myocardial tissues of NLRP3, ASC, Caspase-1, Collagen-Ⅰ, Collagen-III, TGF-β1 and Smad2 protein expression levels were significantly reduced (P < 0.05). In the cellular assay the PSP treatment group increased the viability and decreased the proportion of apoptotic cells in high glucose-induced H9c2 cardiomyocytes. Conclusion PSP can improve glucose-lipid metabolism, protect cardiac function, and delay the occurrence of myocardial fibrosis in diabetic rats, and it can also improve the viability of cardiomyocytes, and its mechanism of action may be related to the inhibition of cellular pyroptosis and delay the occurrence of ventricular remodeling.

    参考文献
    [1] Girard D, Vandiedonck C. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 991716.
    [2] Tayanloo-Beik A, Roudsari P P, Rezaei-Tavirani M, et al. Diabetes and heart failure: multi-omics approaches[J]. Frontiers in physiology, 2021, 12: 705424.
    [3] Ritchie R H, Abel E D. Basic mechanisms of diabetic heart disease[J]. Circulation research, 2020, 126(11): 1501-1525.
    [4] Lindman B R. The diabetic heart failure with preserved ejection fraction phenotype: is it real and is it worth targeting therapeutically? [J]. Circulation, 2017, 135(8): 736-740.
    [5] Bedoui S, Herold M J, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications[J]. Nature reviews Molecular cell biology, 2020, 21(11): 678-695.
    [6] 张楠,贾云柱,田纪祥,等.中医药调控糖尿病心肌病中细胞焦亡的研究进展[J].中国动脉硬化杂志,2024,32(09):813-820+828.DOI:10.20039/j.cnki.1007-3949.2024.09.011.
    [7] Salvatore T, Pafundi P C, Galiero R, et al. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms[J]. Frontiers in Medicine, 2021, 8: 695792.
    [8] Wei Y, Yang L, Pandeya A, et al. Pyroptosis-induced inflammation and tissue damage[J]. Journal of molecular biology, 2022, 434(4): 167301.
    [9] Zhang L, Ai C, Bai M, et al. NLRP3 inflammasome/pyroptosis: a key driving force in diabetic cardiomyopathy[J]. International Journal of Molecular Sciences, 2022, 23(18): 10632.
    [10] 陈宇,周芸湄,李丹,等.黄精的现代药理作用研究进展[J].中药材,2021,44(01):240-244.DOI:10.13863/j.issn1001-4454.2021.01.046.
    [11] 张美珍,史丽伟,杨亚男,等.糖尿病中医治疗思路新探[J].世界中医药,2022,17(14):2071-2074.
    [12] Liu D, Tang W, Han C, et al. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity[J]. Frontiers in Nutrition, 2022, 9: 1074671.
    [13] Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045., 2022, 183[J]. DOI: https://doi. org/10.1016/j. diabres, 2021: 109119.
    [14] Matsushita K, Harada K, Kohno T, et al. Prevalence and clinical characteristics of diabetic cardiomyopathy in patients with acute heart failure[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2024, 34(5): 1325-1333.
    [15] 刘峰兆,赵丽娟,李纪新,等.中药调控自噬干预糖尿病心肌病的研究进展[J].中国中药杂志,2024,49(14):3714-3724.DOI:10.19540/j.cnki.cjcmm.20240402.401.
    [16] 王红芹,徐凤芹,周庆兵,等.从“血气不和”理论探讨“代谢灵活性”失衡在糖尿病心肌病的作用[J].中国实验方剂学杂志,2023,29(01):194-201.DOI:10.13422/j.cnki.syfjx.20221729.
    [17] 漆仲文,赵俊男,张艳虹,等.从细胞衰老视角论中医药防治糖尿病心肌病[J].中国中西医结合杂志,2024,44(02):222-227.
    [18] Guo Z, Tuo H, Tang N, et al. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice[J]. International journal of biological sciences, 2022, 18(2): 826.
    [19] Liu C, Yao Q, Hu T, et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J]. Molecular Therapy-Nucleic Acids, 2022, 30: 198-207.
    [20] Cai Z, Yuan S, Luan X, et al. Pyroptosis-related inflammasome pathway: a new therapeutic target for diabetic cardiomyopathy[J]. Frontiers in Pharmacology, 2022, 13: 842313.
    [21] Zhan X, Li Q, Xu G, et al. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors[J]. Frontiers in immunology, 2022,13:1109938.
    [22] Zhang X, Qu H, Yang T, et al. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway[J]. Cell Cycle, 2022, 21(21): 2309-2322.
    [23] Ross C, Chan A H, von Pein J B, et al. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes[J]. Annual review of immunology, 2022, 40(1): 249-269.
    [24] 尤越,李玲美,李磊,等.细胞焦亡与心血管疾病的关系及中医药干预研究进展[J].中国比较医学杂志,2022,32(09):97-108.
    [25] Wei Z, Pinfang K, **g Z, et al. Curcumin improves diabetic cardiomyopathy by inhibiting pyroptosis through AKT/Nrf2/ARE pathway[J]. Mediators of Inflammation, 2023, 2023(1): 3906043.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:55
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-24
  • 最后修改日期:2024-12-15
  • 录用日期:2025-04-09
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭