GDF-15通过激活NO-cGMP-PKG信号通路促进大鼠急性心肌梗死侧枝循环改善心功能的研究
作者:
作者单位:

1.太原市中心医院心内科;2.山西医科大学实验动物中心;3.人类疾病与动物模型山西省重点实验室

基金项目:

太原市科技项目(项目编号:202264);山西省科技厅中央引导地方科技发展资金项目(项目编号:YDZJSX2022B009);山西省基础研究计划项目青年科学研究项目(项目编号:202403021212288)


GDF-15 promotes collateral circulation and improves cardiac function in rats with acute myocardial infarction by activating NO-cGMP-PKG signaling pathway
Author:
Affiliation:

1.Department of Cardiology of Taiyuan Central Hospital;2.Center for Laboratory Animals, Shanxi Medical University;3.Shanxi Key Laboratory of Laboratory Animals and Animal Models of Human Disease

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    目的 探讨生长分化因子-15(GDF-15) 通过激活一氧化氮(NO)-环磷酸鸟苷(cGMP)-蛋白激酶G(PKG)信号通路对急性心肌梗死(AMI)大鼠侧枝循环及心功能的影响。方法 通过结扎冠状动脉左前降支,构建AMI大鼠模型,造模成功后,随机分成假手术组、模型组、GDF-15组,每组12只,GDF-15组腹腔注射GDF-15重组蛋白,其余2组注射等量生理盐水,每周2次,连续8周。超声心动图检测大鼠心功能;HE染色观察大鼠心肌组织病理损伤;CD31免疫组化染色观察大鼠侧枝循环的情况;qPCR检测血管内皮生长因子(VEGF)mRNA表达;试剂盒检测NO、活性氧(ROS)、cGMP表达水平;Western blot 检测VEGF、eNOS单体、pser1177eNOS单体、eNOS二聚体及PKG蛋白表达。结果 与假手术相比,模型组左室收缩末期内径(LVEDs)、左室舒张末期内径(LVEDd)增加,左室射血分数(LVEF)、短轴缩短率(FS)降低,心肌细胞坏死严重,梗死区血管密度降低,VEGF mRNA水平降低,NO、eNOS二聚体、cGMP 水平及PKG蛋白表达水平降低,ROS、eNOS单体及pser1177eNOS单体的表达水平增高(P<0.05);与模型组相比,GDF-15组LVEDs、LVEDd 降低,LVEF、FS升高,心肌细胞坏死得到缓解,梗死区血管密度明显增加,VEGF mRNA水平增高,VEGF、NO、eNOS二聚体、cGMP 水平及PKG蛋白水平增高,ROS、eNOS单体及pser1177eNOS单体的表达水平降低(P<0.05)。结论 GDF-15可通过抑制eNOS解偶联并激活NO-cGMP-PKG 通路,促进缺血心肌侧枝循环、改善心功能。

    Abstract:

    Objective to observe the effects of growth differentiation factor-15 (GDF-15) on collateral circulation and cardiac function in rats with acute myocardial infarction (AMI) by activating the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathway. Methods The AMI rat model was constructed by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into sham operation group, model group, and GDF-15 group, with 12 rats in each group. The rats in the GDF-15 group were intraperitoneally injected with recombinant GDF-15 protein, and the other two groups were injected with the same amount of normal saline twice a week for 8 consecutive weeks. Echocardiography was used to detect the cardiac function of rats; HE staining was used to observe the pathological damage of rat myocardial tissue; CD31 immunohistochemical staining was used to observe the collateral circulation in rats; qPCR was used to detect the expression of vascular endothelial growth factor (VEGF) mRNA; kits were used to detect the expression levels of NO, reactive oxygen species (ROS), and cGMP; Western blot was used to detect the expressions of VEGF, eNOS monomer, pser1177eNOS monomer, eNOS dimer, and PKG protein. Results Compared with the sham operation group, the left ventricular end-systolic diameter (LVEDs), left ventricular end-diastolic diameter (LVEDd) increased, the left ventricular ejection fraction (LVEF), and the short-axis shortening rate (FS) decreased in the model group, the myocardial cell necrosis was severe, the vascular density in the infarcted area decreased, the VEGF mRNA level decreased, the levels of NO, eNOS dimer, cGMP, and the expression of PKG protein decreased, and the expression levels of ROS, eNOS monomer, and pser1177eNOS monomer increased (P < 0.05). Compared with the model group, the LVEDs and LVEDd decreased, the LVEF and FS increased, the myocardial cell necrosis was relieved, the vascular density in the infarcted area increased significantly, the VEGF mRNA level increased, the levels of VEGF, NO, eNOS dimer, cGMP, and the expression of PKG protein increased, and the expression levels of ROS, eNOS monomer, and pser1177eNOS monomer decreased in the GDF-15 group (P < 0.05). Conclusion GDF-15 can promote collateral circulation in ischemic myocardium and improve cardiac function by inhibiting eNOS decoupling and activating the NO-cGMP-PKG pathway.

    参考文献
    [1] DAMLUJI A A, VAN DIEPEN S, KATZ J N, et al. Mechanical Complications of Acute Myocardial Infarction: A Scientific Statement From the American Heart Association[J]. Circulation, 2021, 144(2): e16-e35.
    [2] KRITTANAWONG C, KHAWAJA M, TAMIS-HOLLAND J E, et al. Acute Myocardial Infarction: Etiologies and Mimickers in Young Patients[J]. Journal of the American Heart Association, 2023, 12(18): e029971.
    [3] SAITO Y, OYAMA K, TSUJITA K, et al. Treatment strategies of acute myocardial infarction: updates on revascularization, pharmacological therapy, and beyond[J]. Journal of Cardiology, 2023, 81(2): 168-178.
    [4] SIDDIQUI J A, POTHURAJU R, KHAN P, et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia[J]. Cytokine Growth Factor Reviews, 2022, 64: 71-83.
    [5] EDDY A C, TRASK A J. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease[J]. Cytokine Growth Factor Reviews, 2021, 57: 11-18.
    [6] WANG D, DAY E A, TOWNSEND L K, et al. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease[J]. Nature Reviews. Endocrinology, 2021, 17(10): 592-607.
    [7] XIE B, TANG W, WEN S, et al. GDF-15 Inhibits ADP-Induced Human Platelet Aggregation through the GFRAL/RET Signaling Complex[J]. Biomolecules, 2023, 14(1): 38.
    [8] HUMERES C, SHINDE A V, TULETA I, et al. Fibroblast Smad7 Induction Protects the Remodeling Pressure-Overloaded Heart[J]. Circulation Research, 2024, 135(3): 453-469.
    [9] CAI Z, WU C, XU Y, et al. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies[J]. Aging and Disease, 2023, 14(1): 46-62.
    [10] HUANG Y, ZHANG K, LIU M, et al. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2021, 91: 153633.
    [11] DEGJONI A, CAMPOLO F, STEFANINI L, et al. The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders[J]. Journal of thrombosis and haemostasis: JTH, 2022, 20(11): 2465-2474.
    [12] KIM S M, YUEN T, IQBAL J, et al. The NO-cGMP-PKG pathway in skeletal remodeling[J]. Annals of the New York Academy of Sciences, 2021, 1487(1): 21-30.
    [13] YANG H Y, LIU M L, LUO P, et al. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 104: 154268.
    [14] WEI B Y, HOU J N, YAN C P, et al. Shexiang Baoxin Pill treats acute myocardial infarction by promoting angiogenesis via GDF15-TRPV4 signaling[J]. Biomedicine Pharmacotherapy = Biomedecine Pharmacotherapie, 2023, 165: 115186.
    [15] 周继明. 生长分化因子15在急性心肌梗死中的功能及分子机制研究[D/OL]. 中国人民解放军空军军医大学, 2019.
    [16] AKHTAR K H, KHAN M S, BARON S J, et al. The spectrum of post-myocardial infarction care: From acute ischemia to heart failure[J]. Progress in Cardiovascular Diseases, 2024, 82: 15-25.
    [17] RALLIDIS L S, XENOGIANNIS I, BRILAKIS E S, et al. Causes, Angiographic Characteristics, and Management of Premature Myocardial Infarction: JACC State-of-the-Art Review[J]. Journal of the American College of Cardiology, 2022, 79(24): 2431-2449.
    [18] XIONG Y Y, GONG Z T, TANG R J, et al. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction[J]. Theranostics, 2021, 11(3): 1046-1058.
    [19] MYRMEL G M S, STEIRO O T, TJORA H L, et al. Growth Differentiation Factor 15: A Prognostic Marker in Patients with Acute Chest Pain without Acute Myocardial Infarction[J]. Clinical Chemistry, 2023, 69(6): 649-660.
    [20] ZOU A, XIAO T, CHI B, et al. Engineered Exosomes with Growth Differentiation Factor-15 Overexpression Enhance Cardiac Repair After Myocardial Injury[J]. International Journal of Nanomedicine, 2024, 19: 3295-3314.
    [21] Liu, S., Chen, X., Wang, H., Ming, B., Wu, M., Wang, Y., Liu, T. (2019). Association of GDF-15 and Syntax Score in Patient with Acute Myocardial Infarction.Cardiovascular therapeutics,2019, 9820210.
    [22] MONMA Y, SHINDO T, EGUCHI K, et al. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction[J]. Cardiovascular Research, 2021, 117(5): 1325-1338.
    [23] [232]QIN L, ZANG M, XU Y, et al. Chlorogenic Acid Alleviates Hyperglycemia-Induced Cardiac Fibrosis through Activation of the NO/cGMP/PKG Pathway in Cardiac Fibroblasts[J]. Molecular Nutrition Food Research, 2021, 65(2): e2000810.
    [24] ZHANG N, FENG B, MA X, et al. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction[J]. Cardiovascular Diabetology, 2019, 18(1): 107.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:34
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-30
  • 最后修改日期:2025-01-08
  • 录用日期:2025-05-06
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭