Research progress on roles of ferroptosis in chemotherapy resistance of leukemia
Author:
Affiliation:

Tianjin University of Traditional Chinese Medicine

  • Article
  • | |
  • Metrics
  • |
  • Reference [90]
  • | | | |
  • Comments
    Abstract:

    Chemotherapy resistance in leukemia is an urgent clinical therapeutic challenge. Ferroptosis is a unique mode of cell death driven by iron-dependent phospholipid peroxidation. Since leukemia is characterised by increased oxidative stress and iron overload, it can be hypothesised that leukemia cells are susceptible to ferroptosis, suggesting therapeutic potential. In recent years, ferroptosis has been extensively studied and used in the treatment of various types of leukemia. Several studies have demonstrated the association between the regulatory pathways of ferroptosis and the mechanisms of leukemia drug resistance. The induction of ferroptosis through different pathways can effectively reduce the resistance of various types of leukemia cells to chemotherapeutic drugs, and thus improve the clinical efficacy. This article summarizes the regulatory mechanisms of ferroptosis, analyzes in detail the association between oxidative stress pathways and iron metabolism pathways of ferroptosis and the mechanism of leukemia drug resistance, and compiles the experimental studies and clinical applications of ferroptosis in the treatment of various types of drug-resistant leukemias, with the aim of providing new ideas and directions for the study of ferroptosis and a new strategy to reverse chemotherapy resistance for leukemia patients in the future.

    Reference
    [1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality? Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2021,71(3):209-249.
    [2] Burnett A K, Kell J, Rowntree C. Acute myeloid leukemia: therapeutic indications[J]. Curr Opin Hematol,2000,7(6):333-338.
    [3] Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia[J]. J Clin Oncol,2011,29(5):487-494.
    [4] Wang H W, Ma K L, Liu H, et al. Reversal of multidrug resistance in leukemia cells using a transferrin-modified? nanomicelle encapsulating both doxorubicin and psoralen[J]. Aging (Albany NY),2020,12(7):6018-6029.
    [5] Robinson A J, Hopkins G L, Rastogi N, et al. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the? Glycolytic Regulator PFKFB3[J]. Cancer Res,2020,80(5):937-949.
    [6] Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance[J]. Mol Cancer,2022,21(1):47.
    [7] Zhang J, Liu Y, Li Q, et al. Ferroptosis in hematological malignancies and its potential network with abnormal? tumor metabolism[J]. Biomed Pharmacother,2022,148:112747.
    [8] Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072.
    [9] Jiang X, Stockwell B R, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol,2021,22(4):266-282.
    [10] Bebber C M, Muller F, Prieto C L, et al. Ferroptosis in Cancer Cell Biology[J]. Cancers (Basel),2020,12(1).
    [11] Sies H, Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol,2020,21(7):363-383.
    [12] Stockwell B R, Jiang X. The Chemistry and Biology of Ferroptosis[J]. Cell Chem Biol,2020,27(4):365-375.
    [13] Lo M, Wang Y Z, Gout P W. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer? and other diseases[J]. J Cell Physiol,2008,215(3):593-602.
    [14] Lu S C. Glutathione synthesis[J]. Biochim Biophys Acta,2013,1830(5):3143-3153.
    [15] Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of? ferroptosis[J]. Nat Chem Biol,2016,12(7):497-503.
    [16] Zou Y, Palte M J, Deik A A, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and? confers sensitivity to ferroptosis[J]. Nat Commun,2019,10(1):1617.
    [17] Eaton J K, Furst L, Ruberto R A, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles[J]. Nat Chem Biol,2020,16(5):497-506.
    [18] Zhang Y, Swanda R V, Nie L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and? ferroptosis regulation[J]. Nat Commun,2021,12(1):1589.
    [19] Zhang Y, Tan H, Daniels J D, et al. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse? Lymphoma Model[J]. Cell Chem Biol,2019,26(5):623-633.
    [20] Badgley M A, Kremer D M, Maurer H C, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice[J]. Science,2020,368(6486):85-89.
    [21] Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and? cancer therapy[J]. Protein Cell,2021,12(8):599-620.
    [22] Doll S, Freitas F P, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature,2019,575(7784):693-698.
    [23] Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature,2019,575(7784):688-692.
    [24] Wang Y, Hekimi S. Understanding Ubiquinone[J]. Trends Cell Biol,2016,26(5):367-378.
    [25] Koppula P, Lei G, Zhang Y, et al. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1? inactive lung cancers[J]. Nat Commun,2022,13(1):2206.
    [26] Mishima E, Ito J, Wu Z, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature,2022,608(7924):778-783.
    [27] Soula M, Weber R A, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis? inducers[J]. Nat Chem Biol,2020,16(12):1351-1360.
    [28] Kraft V, Bezjian C T, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid? Remodeling[J]. ACS Cent Sci,2020,6(1):41-53.
    [29] Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature,2021,593(7860):586-590.
    [30] Wu S, Mao C, Kondiparthi L, et al. A ferroptosis defense mechanism mediated by glycerol-3-phosphate dehydrogenase 2? in mitochondria[J]. Proc Natl Acad Sci U S A,2022,119(26):e2121987119.
    [31] Liang D, Feng Y, Zandkarimi F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex? hormones[J]. Cell,2023,186(13):2748-2764.
    [32] Tang L, Yu Y, Deng W, et al. TXNDC12 inhibits lipid peroxidation and ferroptosis[J]. iScience,2023,26(12):108393.
    [33] Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med,2019,133:162-168.
    [34] Garciaz S, Miller T, Collette Y, et al. Targeting regulated cell death pathways in acute myeloid leukemia[J]. Cancer Drug Resist,2023,6(1):151-168.
    [35] Muckenthaler M U, Rivella S, Hentze M W, et al. A Red Carpet for Iron Metabolism[J]. Cell,2017,168(3):344-361.
    [36] Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human? diseases[J]. Biochim Biophys Acta Gen Subj,2019,1863(9):1398-1409.
    [37] O''Donnell V B, Aldrovandi M, Murphy R C, et al. Enzymatically oxidized phospholipids assume center stage as essential regulators? of innate immunity and cell death[J]. Sci Signal,2019,12(574).
    [38] Conrad M, Pratt D A. The chemical basis of ferroptosis[J]. Nat Chem Biol,2019,15(12):1137-1147.
    [39] Gammella E, Buratti P, Cairo G, et al. The transferrin receptor: the cellular iron gate[J]. Metallomics,2017,9(10):1367-1375.
    [40] Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy,2016,12(8):1425-1428.
    [41] 王丽红. 靶向谷胱甘肽的小分子化合物通过促进Keapl蛋白的S-谷胱甘肽化和诱导细胞凋亡来抑制肿瘤生长[D]. 山东大学,2018.
    [42] Asano T, Tsutsuda-Asano A, Fukunaga Y. Indomethacin overcomes doxorubicin resistance by decreasing intracellular content? of glutathione and its conjugates with decreasing expression of? gamma-glutamylcysteine synthetase via promoter activity in doxorubicin-resistant? leukemia cells[J]. Cancer Chemother Pharmacol,2009,64(4):715-721.
    [43] Zhang X, Ai Z, Zhang Z, et al. Dihydroartemisinin Triggers Ferroptosis in Multidrug-Resistant Leukemia Cells[J]. DNA Cell Biol,2022,41(8):705-715.
    [44] 闫理想,姜静,史哲新,等. 中药单体逆转白血病多药耐药研究进展[J]. 山西中医,2023,39(01):67-70.
    [45] Hanssen K M, Haber M, Fletcher J I. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers:? Beyond pharmacological inhibition[J]. Drug Resist Updat,2021,59:100795.
    [46] Chen J, Tian B, Zhou C, et al. A Novel Resveratrol-Arsenic Trioxide Combination Treatment Synergistically? Induces Apoptosis of Adriamycin-Selected Drug-Resistant Leukemia K562 Cells[J]. J Cancer,2019,10(22):5483-5493.
    [47] Kang Q, Yan S. Piperlongumine reverses doxorubicin resistance through the PI3K/Akt signaling? pathway in K562/A02 human leukemia cells[J]. Exp Ther Med,2015,9(4):1345-1350.
    [48] Pitts H A, Cheng C K, Cheung J S, et al. SPINK2 Protein Expression Is an Independent Adverse Prognostic Marker in AML and? Is Potentially Implicated in the Regulation of Ferroptosis and Immune Response[J]. Int J Mol Sci,2023,24(11).
    [49] Walz C, Ahmed W, Lazarides K, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1? and JAK2(V617F) in mice[J]. Blood,2012,119(15):3550-3560.
    [50] Warsch W, Kollmann K, Eckelhart E, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in? chronic myeloid leukemia[J]. Blood,2011,117(12):3409-3420.
    [51] Cheng Y, Hao Y, Zhang A, et al. Persistent STAT5-mediated ROS production and involvement of aberrant p53? apoptotic signaling in the resistance of chronic myeloid leukemia to imatinib[J]. Int J Mol Med,2018,41(1):455-463.
    [52] Ye F, Chai W, Xie M, et al. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in? HL-60/NRAS(Q61L) cells[J]. Am J Cancer Res,2019,9(4):730-739.
    [53] Wang Q, Bin C, Xue Q, et al. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis? via inhibition of NRF2/GPX4 axis[J]. Cell Death Dis,2021,12(5):426.
    [54] Yu X, Mansouri A, Liu Z, et al. NRF2 activation induced by PML-RARalpha promotes microRNA 125b-1 expression and? confers resistance to chemotherapy in acute promyelocytic leukemia[J]. Clin Transl Med,2021,11(5):e418.
    [55] Liu X, Zhong S, Qiu K, et al. Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia? cells to ferroptosis[J]. Exp Hematol Oncol,2023,12(1):47.
    [56] Wu X, Chen S, Huang K, et al. Triptolide promotes ferroptosis by suppressing Nrf2 to overcome leukemia cell? resistance to doxorubicin[J]. Mol Med Rep,2023,27(1).
    [57] Knorr K, Goldberg A D. Leukemia stem cell gene expression signatures contribute to acute myeloid? leukemia risk stratification[J]. Haematologica,2020,105(3):533-536.
    [58] Terwijn M, Zeijlemaker W, Kelder A, et al. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute? myeloid leukemia[J]. PLoS One,2014,9(9):e107587.
    [59] Zhang Q, Riley-Gillis B, Han L, et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to? BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther,2022,7(1):51.
    [60] 向彩霞,黄彬涛,郝建. 抗凋亡抑制剂维奈克拉在治疗髓系白血病的研究进展[J]. 基础医学与临床,2023,43(05):833-836.
    [61] Gasparetto M, Pei S, Minhajuddin M, et al. Low ferroportin expression in AML is correlated with good risk cytogenetics,? improved outcomes and increased sensitivity to chemotherapy[J]. Leuk Res,2019,80:1-10.
    [62] Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through? autophagy dependent degradation of ferritin[J]. Free Radic Biol Med,2019,131:356-369.
    [63] Chen G Q, Benthani F A, Wu J, et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron? homeostasis[J]. Cell Death Differ,2020,27(1):242-254.
    [64] Mbaveng A T, Chi G F, Bonsou I N, et al. N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity? towards human and animal cancer cells, inducing apoptotic, ferroptotic and? necroptotic cell death[J]. Phytomedicine,2020,76:153261.
    [65] Yu Y, Xie Y, Cao L, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia? cells to chemotherapeutic agents[J]. Mol Cell Oncol,2015,2(4):e1054549.
    [66] Mbaveng A T, Fotso G W, Ngnintedo D, et al. Cytotoxicity of epunctanone and four other phytochemicals isolated from the? medicinal plants Garcinia epunctata and Ptycholobium contortum towards? multi-factorial drug resistant cancer cells[J]. Phytomedicine,2018,48:112-119.
    [67] Mbaveng A T, Ndontsa B L, Kuete V, et al. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic? effects in multi-factorial drug resistant cancer cells via ferroptotic and? apoptotic cell death[J]. Phytomedicine,2018,43:78-85.
    [68] Epsztejn S, Glickstein H, Picard V, et al. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress? response and induces multidrug resistance properties[J]. Blood,1999,94(10):3593-3603.
    [69] Dohner H, Weisdorf D J, Bloomfield C D. Acute Myeloid Leukemia[J]. N Engl J Med,2015,373(12):1136-1152.
    [70] 程霖,金鑫,卢文艺,等. RSL3诱导急性白血病细胞株MOLM13及其耐药细胞株发生铁死亡的作用及相关机制研究[J]. 中国实验血液学杂志,2021,29(04):1109-1118.
    [71] Maiti A, Rausch C R, Cortes J E, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline? hypomethylating agent and venetoclax regimens[J]. Haematologica,2021,106(3):894-898.
    [72] Birsen R, Larrue C, Decroocq J, et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia[J]. Haematologica,2022,107(2):403-416.
    [73] Cluzeau T, Sebert M, Rahme R, et al. Eprenetapopt Plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute? Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myelodysplasies? (GFM)[J]. J Clin Oncol,2021,39(14):1575-1583.
    [74] Sallman D A, Dezern A E, Garcia-Manero G, et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes[J]. J Clin Oncol,2021,39(14):1584-1594.
    [75] Sabatier M, Birsen R, Lauture L, et al. C/EBPalpha Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to? Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia[J]. Cancer Discov,2023,13(7):1720-1747.
    [76] Wei J, Nai G Y, Dai Y, et al. Dipetidyl peptidase-4 and transferrin receptor serve as prognostic biomarkers for? acute myeloid leukemia[J]. Ann Transl Med,2021,9(17):1381.
    [77] Yin Z, Li F, Zhou Q, et al. A ferroptosis-related gene signature and immune infiltration patterns predict the? overall survival in acute myeloid leukemia patients[J]. Front Mol Biosci,2022,9:959738.
    [78] Probst L, Dachert J, Schenk B, et al. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from? ferroptotic cell death[J]. Biochem Pharmacol,2017,140:41-52.
    [79] Ishikawa C, Senba M, Mori N. Evaluation of artesunate for the treatment of adult T-cell leukemia/lymphoma[J]. Eur J Pharmacol,2020,872:172953.
    [80] Wang Y, Iha H. The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma? Patients'' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility[J]. Genes (Basel),2023,14(11).
    [81] Lou S, Hong H, Maihesuti L, et al. Inhibitory effect of hydnocarpin D on T-cell acute lymphoblastic leukemia via? induction of autophagy-dependent ferroptosis[J]. Exp Biol Med (Maywood),2021,246(13):1541-1553.
    [82] 朱婷,范洋. 自噬通过影响铁稳态调节急性淋巴细胞白血病细胞对铁死亡激活剂的敏感性[J]. 中国实验血液学杂志,2021,29(05):1380-1386.
    [83] Liu S, Wu W, Chen Q, et al. TXNRD1: A Key Regulator Involved in the Ferroptosis of CML Cells Induced by? Cysteine Depletion In Vitro[J]. Oxid Med Cell Longev,2021,2021:7674565.
    [84] Xu X H, Gan Y C, Xu G B, et al. Tetrandrine citrate eliminates imatinib-resistant chronic myeloid leukemia cells? in vitro and in vivo by inhibiting Bcr-Abl/beta-catenin axis[J]. J Zhejiang Univ Sci B,2012,13(11):867-874.
    [85] Yin J, Lin Y, Fang W, et al. Tetrandrine Citrate Suppresses Breast Cancer via Depletion of Glutathione? Peroxidase 4 and Activation of Nuclear Receptor Coactivator 4-Mediated? Ferritinophagy[J]. Front Pharmacol,2022,13:820593.
    [86] Hallek M, Cheson B D, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment,? and supportive management of CLL[J]. Blood,2018,131(25):2745-2760.
    [87] Zhang W, Trachootham D, Liu J, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic? lymphocytic leukaemia[J]. Nat Cell Biol,2012,14(3):276-286.
    [88] Blombery P, Anderson M A, Gong J N, et al. Acquisition of the Recurrent Gly101Val Mutation in BCL2 Confers Resistance to? Venetoclax in Patients with Progressive Chronic Lymphocytic Leukemia[J]. Cancer Discov,2019,9(3):342-353.
    [89] Jones D, Woyach J A, Zhao W, et al. PLCG2 C2 domain mutations co-occur with BTK and PLCG2 resistance mutations in? chronic lymphocytic leukemia undergoing ibrutinib treatment[J]. Leukemia,2017,31(7):1645-1647.
    [90] Woyach J A, Ruppert A S, Guinn D, et al. BTK(C481S)-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia[J]. J Clin Oncol,2017,35(13):1437-1443.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:221
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:January 03,2024
  • Revised:March 15,2024
  • Adopted:May 15,2024
Article QR Code