Visualization Analysis of Research Progress on Neutrophils in Diabetes Based on Citespace
Author:
Affiliation:

1.Hunan University of Traditional Chinese Medicine First Affiliated Hospital,Changsha;2.Hunan University of Traditional Chinese Medicine;3.Beita Street Community Health Service Center, Tianjing, Hubei;4.Hunan Province Academy of Chinese Medicine, Changsha, Hunan

  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Objective This article aims to clarify the development of neutrophils and diabetes fields, as well as the evolving characteristics, potential trends, and research hotspots of neutrophils in the diabetes field. Methods 2998 relevant literatures on neutrophils in the diabetes field indexed in Web of Science from 2010 to 2023 were retrieved, and visual analysis of the relevant literatures on neutrophils in the diabetes field was conducted using Citespace6.1.R6. Results Since 2012, publications on this topic have grown rapidly. Bayat Mohammad, Liu Tong, Amini Abdollah, Zhang Rui are high-yield authors, with 7 related articles published. China and Shanghai Jiao Tong Univ are the countries and institutions with the most published papers. The most influential journal in this field is "PLOS ONE", cited 1380 times. Literature co-citation analysis shows that the highest focus in topics related to diabetes currently are "extracellular trap" and "covid-19 patient". Co-occurrence analysis, clustering analysis, and keyword burst analysis indicate that "lymphocyte ratio" (13.08) and "neutrophil extracellular trap" (7.2) are the most researched topics in the field of neutrophils and diabetes. Literature in this field mainly focuses on "myocardial infarction", "endothelial", "oxidative stress", and "apoptosis". Conclusion This article analyzes the evolving trends of neutrophils in the diabetes field using Citespace, providing new insights for researchers to conduct future research in the diabetes field.

    Reference
    [1] Giovenzana A, Carnovale D, Phillips B, Petrelli A, Giannoukakis N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab Res Rev. 2022 Jan; 38(1): e3483.
    [2] Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis. 2016 Jan; 26(1): 1-8.
    [3] Njeim R, Azar WS, Fares AH, Azar ST, Kfoury Kassouf H, Eid AA. NETosis contributes to the pathogenesis of diabetes and its complications. J Mol Endocrinol. 2020 Nov; 65(4): R65-R76.
    [4] José M. Merigó, Yang J B .A bibliometric analysis of operations research and management science[J].Omega, 2017.
    [5] Demirtas L, Degirmenci H, Akbas EM, Ozcicek A, Timuroglu A, Gurel A, Ozcicek F. Association of hematological indicies with diabetes, impaired glucose regulation and microvascular complications of diabetes. Int J Clin Exp Med. 2015 Jul 15;8(7):11420-7.
    [6] Bakirci EM, Demirtas L, Degirmenci H, Topcu S, Demirelli S, Hamur H, Buyuklu M, Akbas EM, Ozcicek A, Ozcicek F, Ceyhun G, Topal E. Relationship of the total atrial conduction time to subclinical atherosclerosis, inflammation and echocardiographic parameters in patients with type 2 diabetes mellitus. Clinics (Sao Paulo). 2015 Feb;70(2):73-80.
    [7] Akbas EM, Demirtas L, Ozcicek A, Timuroglu A, Bakirci EM, Hamur H, Ozcicek F, Turkmen K. Association of epicardial adipose tissue, neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with diabetic nephropathy. Int J Clin Exp Med. 2014 Jul 15;7(7):1794-801.
    [8] Akbas EM, Hamur H, Demirtas L, Bakirci EM, Ozcicek A, Ozcicek F, Kuyrukluyildiz U, Turkmen K. Predictors of epicardial adipose tissue in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2014 May 9;6:55. doi: 10.1186/1758-5996-6-55.
    [9] Lee S, Zhou J, Wong WT, Liu T, Wu WKK, Wong ICK, Zhang Q, Tse G. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endocr Disord. 2021 May 4; 21(1): 94.
    [10] Zhang R, Chen J, Xiong Y, Wang L, Huang X, Sun T, Zha B, Wu Y, Yan C, Zang S, Zhou Q, Huang Z, Liu J. Increased neutrophil count Is associated with the development of chronic kidney disease in patients with diabetes. J Diabetes. 2022 Jul;14(7):442-454.
    [11] Zhang H, Guo SH, Xue ZK, Zhang YR, Wang JR, Che JJ, Liu T, Tao HY, Li GP, Rha SW, Ashraful-Haque SZ, Chen KY. Effect of Calcium Dobesilate in Preventing Contrast-Induced Nephropathy in Patients with Diabetes and Chronic Kidney Disease. Clinics (Sao Paulo). 2021 Oct 18;76:e2942
    [12] Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal. 2022 Apr;36(10-12):652-666.
    [13] Alguwaihes AM, Al-Sofiani ME, Megdad M, Albader SS, Alsari MH, Alelayan A, Alzahrani SH, Sabico S, Al-Daghri NM, Jammah AA. Diabetes and Covid-19 among hospitalized patients in Saudi Arabia: a single-centre retrospective study. Cardiovasc Diabetol. 2020 Dec 5;19(1):205.
    [14] Hazeldine J, Lord JM. Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19? Front Immunol. 2020 Oct 6;11:573662.
    [15] Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal. 2022 Apr;36(10-12):652-666.
    [16] Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res. 2019 Apr;60(4):721-727.
    [17] Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol. 2022 Jun;19(6):660-686.
    [18] Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020 Jul 2;11:694.
    [19] Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X, Yu X, Dong K. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care. 2020 Apr;8(1):e001343.
    [20] Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015 Jul;21(7):815-9.
    [21] Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012 Sep;18(9):1407-12.
    [22] Liu D, Yang P, Gao M, Yu T, Shi Y, Zhang M, Yao M, Liu Y, Zhang X. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci (Lond). 2019 Feb 18;133(4):565-582.
    [23] Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, Fan X, Yu FS. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. Am J Pathol. 2016 Jun;186(6):1466-80.
    [24] Nielsen SE, Hansen HP, Jensen BR, Parving HH, Rossing P. Urinary neutrophil gelatinase-associated lipocalin and progression of diabetic nephropathy in type 1 diabetic patients in a four-year follow-up study. Nephron Clin Pract. 2011;118(2):c130-5.
    [25] Njeim R, Azar WS, Fares AH, Azar ST, Kfoury Kassouf H, Eid AA. NETosis contributes to the pathogenesis of diabetes and its complications. J Mol Endocrinol. 2020 Nov;65(4):R65-R76.
    [26] Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019 Sep;288:9-16.
    [27] Peric S, Stulnig TM. Diabetes and COVID-19 : Disease-Management-People. Wien Klin Wochenschr. 2020 Jul;132(13-14):356-361.
    [28] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062.
    [29] Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015 Jul;21(7):815-9.
    [30] Hazeldine J, Lord JM. Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19? Front Immunol. 2020 Oct 6;11:573662.
    [31] Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis. 2016 Jan;26(1):1-8.
    [32] Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015 Jul;21(7):815-9.
    [33] Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019 Sep;288:9-16.
    [34] Kraakman MJ, Lee MK, Al-Sharea A, Dragoljevic D, Barrett TJ, Montenont E, Basu D, Heywood S, Kammoun HL, Flynn M, Whillas A, Hanssen NM, Febbraio MA, Westein E, Fisher EA, Chin-Dusting J, Cooper ME, Berger JS, Goldberg IJ, Nagareddy PR, Murphy AJ. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017 Jun 1;127(6):2133-2147.
    [35] Flynn MC, Kraakman MJ, Tikellis C, Lee MKS, Hanssen NMJ, Kammoun HL, Pickering RJ, Dragoljevic D, Al-Sharea A, Barrett TJ, Hortle F, Byrne FL, Olzomer E, McCarthy DA, Schalkwijk CG, Forbes JM, Hoehn K, Makowski L, Lancaster GI, El-Osta A, Fisher EA, Goldberg IJ, Cooper ME, Nagareddy PR, Thomas MC, Murphy AJ. Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis. Circ Res. 2020 Sep 11;127(7):877-892.
    [36] Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29;107(9):1058-70.
    [37] Shah MS, Brownlee M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ Res. 2016 May 27;118(11):1808-29.
    [38] Vermot A, Petit-H?rtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel). 2021 Jun 1;10(6):890.
    [39] Su-Bin Kwak, Sang Jin Kim, Jiyoung Kim, Ye-Lim Kang. et al. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. Exp Mol Med. 2022 Jun;54(6):720-729. doi: 10.1038/s12276-022-00784-2. Epub 2022 Jun 28.
    [40] Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S, Seki E, Schnabl B, Hevener AL, Greenberg HB, Kisseleva T, Karin M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018 Aug;560(7717):198-203.
    [41] Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, von Pein JB, Broz P, Sweet MJ, Schroder K. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018 Aug 24;3(26):eaar6676.
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:228
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:March 28,2024
  • Revised:April 16,2024
  • Adopted:June 07,2024
Article QR Code