Research Progress on the Involvement of Striatal Abnormal Temporal and Spatial Development in Repetitive and Stereotyped Behaviors in Autism
Author:
Affiliation:

(1 Henan Provincial Rehabilitation Key Laboratory,The Fifth Affiliated Hospital of Zhengzhou University,Henan Zhengzhou 450052, China) (2 Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science,Henan Zhengzhou 450052)

Fund Project:

Henan Province Key Scientific and Technological Research and Development Projects(241111210500)、Henan Province Major Science and Technology Special Projects(221100310200)、Key Projects Co-Built by the Henan Provincial Health Commission and Ministry-Level Departments(SBGJ202002123)

  • Article
  • | |
  • Metrics
  • |
  • Reference [63]
  • | | | |
  • Comments
    Abstract:

    The incidence of autism is rising annually, and the repetitive stereotyped behaviors that characterize its core symptoms are varied and challenging to treat due to unclear pathogenesis. The striatum is an important brain region for behavioral research, with a unique mosaic structure, complex neural origin, and finely regulated developmental process, which is highly susceptible to genetic and environmental influences. Both clinical and basic studies have indicated that abnormal development of the striatal nuclei may contribute to the pathogenesis of these repetitive stereotyped behaviors in autism. Previous clinical imaging data have primarily revealed variations such as the general outline of the nuclei; however, they have been unable to detect the internal microstructure within these nuclei. By examining abnormalities in the spatiotemporal development of the striatum, we aim to advance our understanding of repetitive stereotyped behaviors associated with autism and provide guidance for future animal experiments and clinical research endeavors.

    Reference
    [1] Sacai H, Sakoori K, Konno K, et al. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex[J]. Nature Communications, 2020,11(1):5140.DOI:10.1038/s41467-020-18861-3.
    [2] 石晓辉. 孤独症儿童重复刻板行为的功能分析与管理[J]. 现代特殊教育, 2024(19):25-28.DOI:10.3969/j.issn.1004-8014.2024.19.010.
    [3] 张竞, 贾相斌, 夏昆, 等. 孤独症谱系障碍的遗传病因和神经生物学机制[J]. 中国科学:生命科学, 2024,54(11):2051-2067.
    [4] 樊亚蕾, 李恩耀, 赵鹏举, 等. 纹状体及其环路参与孤独症重复刻板行为机制研究进展[J]. 中国实用神经疾病杂志, 2021,24(24):2184-2193.DOI:10.12083/SYSJ.2021.24.021.
    [5] Bodfish J W, Symons F J, Parker D E, et al. Varieties of repetitive behavior in autism: comparisons to mental retardation[J]. J Autism Dev Disord, 2000,30(3):237-243.DOI:10.1023/a:1005596502855.
    [6] Lam K S, Aman M G. The Repetitive Behavior Scale-Revised: independent validation in individuals with autism spectrum disorders[J]. J Autism Dev Disord, 2007,37(5):855-866.DOI:10.1007/s10803-006-0213-z.
    [7] 李春阳, 贺莉, 田琳, 等. 孤独症谱系障碍儿童重复刻板行为的特点及相关影响因素[J]. 中国妇幼健康研究, 2023,34(1):15-20.DOI:10.3969/j.issn.1673-5293.2023.01.004.
    [8] Lewis M, Kim S J. The pathophysiology of restricted repetitive behavior[J]. J Neurodev Disord, 2009,1(2):114-132.DOI:10.1007/s11689-009-9019-6.
    [9] Esbensen A J, Seltzer M M, Lam K S, et al. Age-related differences in restricted repetitive behaviors in autism spectrum disorders[J]. J Autism Dev Disord, 2009,39(1):57-66.DOI:10.1007/s10803-008-0599-x.
    [10] Van''T W A, Cauvet E, Toro R, et al. Sex differences in brain structure: a twin study on restricted and repetitive behaviors in twin pairs with and without autism[J]. Mol Autism, 2020,11(1):1.DOI:10.1186/s13229-019-0309-x.
    [11] Bishop S L, Hus V, Duncan A, et al. Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders[J]. J Autism Dev Disord, 2013,43(6):1287-1297.DOI:10.1007/s10803-012-1671-0.
    [12] 邱婷, 钱璐, 肖湘, 等. 2~3岁孤独谱系障碍儿童尾状核体积与重复刻板行为的关系[J]. 临床精神医学杂志, 2014,24(02):83-85.
    [13] Bishop S L, Hus V, Duncan A, et al. Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders[J]. J Autism Dev Disord, 2013,43(6):1287-1297.DOI:10.1007/s10803-012-1671-0.
    [14] 孙炜奇, 冯建新. 孤独症儿童的执行功能与重复刻板行为相关性研究综述[J]. 现代特殊教育, 2023(2):61-67.DOI:10.3969/j.issn.1004-8014.2023.02.010.
    [15] Hyper-connectivity of the striatum related to restricted and repetitive behaviors ’ severity in children with ASD[J].DOI:10.1101/2020.02.21.957993.
    [16] Pauli W M, O''Reilly R C, Yarkoni T, et al. Regional specialization within the human striatum for diverse psychological functions[J]. Proc Natl Acad Sci U S A, 2016,113(7):1907-1912.DOI:10.1073/pnas.1507610113.
    [17] Peters A J, Fabre J, Steinmetz N A, et al. Striatal activity topographically reflects cortical activity[J]. Nature, 2021,591(7850):420-425.DOI:10.1038/s41586-020-03166-8.
    [18] Lipton D M, Gonzales B J, Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions[J]. Frontiers in Systems Neuroscience, 2019,13.DOI:10.3389/fnsys.2019.00028.
    [19] Longo F, Aryal S, Anastasiades P G, et al. Cell-type-specific disruption of cortico-striatal circuitry drives repetitive patterns of behavior in fragile X syndrome model mice[J]. Cell Rep, 2023,42(8):112901.DOI:10.1016/j.celrep.2023.112901.
    [20] Fuccillo M V. Striatal Circuits as a Common Node for Autism Pathophysiology[J]. Front Neurosci, 2016,10:27.DOI:10.3389/fnins.2016.00027.
    [21] 梁光利, 赵超齐, 刘婷婷, 等. 伴忧郁特征抑郁症患者腹侧纹状体功能连接改变与临床特征的相关性研究[J]. 精神医学杂志, 2024,37(1):18-23.DOI:10.3969/j.issn.2095-9346.2024.01.005.
    [22] Del R N, Trigo-Damas I, Obeso J A, et al. Neuron types in the primate striatum: Stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys[J]. Neuropathol Appl Neurobiol, 2022,48(5):e12812.DOI:10.1111/nan.12812.
    [23] Ahmed N Y, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity[J]. Front Mol Neurosci, 2019,12:204.DOI:10.3389/fnmol.2019.00204.
    [24] 宋恒毅, 胥寒, 韩峰. 背侧纹状体参与认知功能神经环路信息整合研究进展[J]. 南京医科大学学报(自然科学版), 2022,42(12):1759-1766.
    [25] 郑其, 范娟, 田英芳, 等. 多巴胺系统参与孤独症核心症状表达的神经病理机制研究进展[J]. 空军军医大学学报, 2024,45(6):705-709, 716.DOI:10.13276/j.issn.2097-1656.2024.06.018.
    [26] 黄世明, 岳建兰, 尹亮, 等. 帕金森病模型大鼠纹状体11C-CFT microPET/CT多巴胺转运蛋白显像与中脑黑质多巴胺能神经元受损的相关性研究[J]. 中华核医学与分子影像杂志, 2021,41(5):291-295.DOI:10.3760/cma.j.cn321828-20200822-00320.
    [27] Bonnavion P, Varin C, Fakhfouri G, et al. Striatal projection neurons coexpressing dopamine D1 and D2 receptors modulate the motor function of D1- and D2-SPNs[J]. Nat Neurosci, 2024.DOI:10.1038/s41593-024-01694-4.
    [28] Gerfen C R. The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems[J]. Nature, 1984,311(5985):461-464.DOI:10.1038/311461a0.
    [29] Lopez-Huerta V G, Nakano Y, Bausenwein J, et al. The neostriatum: two entities, one structure?[J]. Brain Struct Funct, 2016,221(3):1737-1749.DOI:10.1007/s00429-015-1000-4.
    [30] Brimblecombe K R, Cragg S J. The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function[J]. ACS Chem Neurosci, 2017,8(2):235-242.DOI:10.1021/acschemneuro.6b00333.
    [31] Crittenden J R, Lacey C J, Weng F J, et al. Striatal Cholinergic Interneurons Modulate Spike-Timing in Striosomes and Matrix by an Amphetamine-Sensitive Mechanism[J]. Front Neuroanat, 2017,11:20.DOI:10.3389/fnana.2017.00020.
    [32] Brimblecombe K R, Cragg S J. The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function[J]. ACS Chem Neurosci, 2017,8(2):235-242.DOI:10.1021/acschemneuro.6b00333.
    [33] McGregor M M, McKinsey G L, Girasole A E, et al. Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons[J]. Cell Rep, 2019,29(6):1419-1428.DOI:10.1016/j.celrep.2019.09.076.
    [34] Smith J B, Klug J R, Ross D L, et al. Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments[J]. Neuron, 2016,91(5):1069-1084.DOI:10.1016/j.neuron.2016.07.046.
    [35] He J, Kleyman M, Chen J, et al. Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum[J]. Curr Biol, 2021,31(24):5473-5486.DOI:10.1016/j.cub.2021.10.015.
    [36] Canales J J, Graybiel A M. A measure of striatal function predicts motor stereotypy[J]. Nat Neurosci, 2000,3(4):377-383.DOI:10.1038/73949.
    [37] Ferhat A T, Verpy E, Biton A, et al. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice[J]. Front Mol Neurosci, 2023,16:1139118.DOI:10.3389/fnmol.2023.1139118.
    [38] Lopez-Huerta V G, Nakano Y, Bausenwein J, et al. The neostriatum: two entities, one structure?[J]. Brain Struct Funct, 2016,221(3):1737-1749.DOI:10.1007/s00429-015-1000-4.
    [39] Bloem B, Huda R, Sur M, et al. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses[J]. Elife, 2017,6.DOI:10.7554/eLife.32353.
    [40] Del Rey N L, García-Cabezas M á. Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology[J]. Neurobiology of Disease, 2023,176:105945.DOI:10.1016/j.nbd.2022.105945.
    [41] Hagimoto K, Takami S, Murakami F, et al. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum[J]. J Comp Neurol, 2017,525(4):794-817.DOI:10.1002/cne.24096.
    [42] Hagimoto K, Takami S, Murakami F, et al. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum[J]. J Comp Neurol, 2017,525(4):794-817.DOI:10.1002/cne.24096.
    [43] Kelly S M, Raudales R, He M, et al. Radial Glial Lineage Progression and Differential Intermediate Progenitor Amplification Underlie Striatal Compartments and Circuit Organization[J]. Neuron, 2018,99(2):345-361.DOI:10.1016/j.neuron.2018.06.021.
    [44] Matsushima A, Graybiel A M. Combinatorial Developmental Controls on Striatonigral Circuits[J]. Cell Rep, 2020,31(11):107778.DOI:10.1016/j.celrep.2020.107778.
    [45] Hagimoto K, Takami S, Murakami F, et al. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum[J]. J Comp Neurol, 2017,525(4):794-817.DOI:10.1002/cne.24096.
    [46] 何芳, 毛蕾蕾, 庞楠, 等. POLR3A基因复合杂合突变导致全面发育落后合并癫痫、纹状体变性[J]. 中华神经科杂志, 2021,54(12):1282-1289.DOI:10.3760/cma.j.cn113694-20210322-00208.
    [47] Lee H, Leamey C A, Sawatari A. Rapid reversal of chondroitin sulfate proteoglycan associated staining in subcompartments of mouse neostriatum during the emergence of behaviour[J]. PLoS One, 2008,3(8):e3020.DOI:10.1371/journal.pone.0003020.
    [48] Kristiansen L V, Bannon M J, Meador-Woodruff J H. Expression of transcripts for myelin related genes in postmortem brain from cocaine abusers[J]. Neurochem Res, 2009,34(1):46-54.DOI:10.1007/s11064-008-9655-3.
    [49] Cheffer A, Flitsch L J, Krutenko T, et al. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction[J]. Mol Autism, 2020,11(1):99.DOI:10.1186/s13229-020-00383-w.
    [50] Satterstrom F K, Kosmicki J A, Wang J, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism[J]. Cell, 2020,180(3):568-584.DOI:10.1016/j.cell.2019.12.036.
    [51] 李双宇, 赵鑫, 宣德胜, 等. 扩散峰度成像评估孤独症谱系障碍儿童纹状体异常[J]. 中国临床医学影像杂志, 2023,34(3):164-168.DOI:10.12117/jccmi.2023.03.003.
    [52] Ferhat A T, Verpy E, Biton A, et al. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice[J]. Front Mol Neurosci, 2023,16:1139118.DOI:10.3389/fnmol.2023.1139118.
    [53] Crittenden J R, Graybiel A M. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments[J]. Front Neuroanat, 2011,5:59.DOI:10.3389/fnana.2011.00059.
    [54] Fuccillo M V. Striatal Circuits as a Common Node for Autism Pathophysiology[J]. Front Neurosci, 2016,10:27.DOI:10.3389/fnins.2016.00027.
    [55] Tinterri A, Menardy F, Diana M A, et al. Active intermixing of indirect and direct neurons builds the striatal mosaic[J]. Nat Commun, 2018,9(1):4725.DOI:10.1038/s41467-018-07171-4.
    [56] Fuccillo M V. Striatal Circuits as a Common Node for Autism Pathophysiology[J]. Front Neurosci, 2016,10:27.DOI:10.3389/fnins.2016.00027.
    [57] Jaquins-Gerstl A, Nesbitt K M, Michael A C. In vivo evidence for the unique kinetics of evoked dopamine release in the patch and matrix compartments of the striatum[J]. Anal Bioanal Chem, 2021,413(27):6703-6713.DOI:10.1007/s00216-021-03300-z.
    [58] Seiler J L, Cosme C V, Sherathiya V N, et al. Dopamine signaling in the dorsomedial striatum promotes compulsive behavior[J]. Curr Biol, 2022,32(5):1175-1188.DOI:10.1016/j.cub.2022.01.055.
    [59] Sippy T, Tritsch N X. Unraveling the dynamics of dopamine release and its actions on target cells[J]. Trends Neurosci, 2023,46(3):228-239.DOI:10.1016/j.tins.2022.12.005.
    [60] Nadel J A, Pawelko S S, Scott J R, et al. Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release[J]. Sci Rep, 2021,11(1):19847.DOI:10.1038/s41598-021-99350-5.
    [61] Nishikawa S, Goto S, Hamasaki T, et al. Transient and compartmental expression of the reeler gene product reelin in the developing rat striatum[J]. Brain Res, 1999,850(1-2):244-248.DOI:10.1016/s0006-8993(99)02136-8.
    [62] Kang W Y, Kim S S, Cho S K, et al. Migratory defect of mesencephalic dopaminergic neurons in developing reeler mice[J]. Anat Cell Biol, 2010,43(3):241-251.DOI:10.5115/acb.2010.43.3.241.
    [63] Athnaiel O, Job G A, Ocampo R, et al. Effects of the Partial M1 Muscarinic Cholinergic Receptor Agonist CDD-0102A on Stereotyped Motor Behaviors and Reversal Learning in the BTBR Mouse Model of Autism[J]. Int J Neuropsychopharmacol, 2022,25(1):64-74.DOI:10.1093/ijnp/pyab079.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:40
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:December 04,2024
  • Revised:January 27,2025
  • Adopted:May 09,2025
Article QR Code