Research progress on animal model analysis of colorectal cancer
Author:
Affiliation:

1.Shenzhen Bao’an Traditional Chinese Medicine Hospital Group;2.Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center)

  • Article
  • | |
  • Metrics
  • |
  • Reference [66]
  • | | | |
  • Comments
    Abstract:

    Colorectal cancer (CRC) is the third most common malignant tumor in the world, given that it ranks third for incidence, after lung cancer and breast cancer. It’s also the second leading cause of cancer-related death. The causes of CRC are complex, treatment options are dependent on the stage of the disease. The purpose of this review is to critically assess the perspectives of pathogenesis and characteristics of clinical indicators from traditional Chinese medicine and Western medicine. Moreover, the updated method and mechanisms of modeling of the existing animal models of CRC are provided. The results are showing that current CRC animal models are almost entirely based on modern medical modeling techniques and the evaluation criteria are also mainly based on Western medicine diagnostic indicators. These models are limited because they are lacking of combining traditional Chinese and Western medicine for disease diagnosis and treatment, making it difficult to elucidate the mechanisms for CRC developing. Besides, reliable large animal models are rarely reported. Therefore, a better understanding of the mechanisms of integrated traditional Chinese medicine and Western medicine for CRC may provide needed insight to improve the predictability of animal models.

    Reference
    [1] 敬小力,董思进,李佳祥,等. 针灸改善结直肠癌的作用机制研究进展 [J]. 湖北科技学院学报(医学版). 2022,36(03):272-276.JING X L,DONG S J,LI J X,et al. Research progress on mechanism of acupuncture in improving colorectal cancer [J]. Journal of HuBei University of Science and Technology(Medical Sciences). 2022,36(03):272-276.
    [2] DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer [J]. Lancet (London, England), 2019,394(10207):1467-1480.
    [3] 唐幸林子. 结直肠癌的中医临床用药规律与中医证候分析 [D], 2020.DANG X L Z. Analysis of Traditional Chinese Medicine Clinical Medication Rules and TCM Syndrome of Colorectal Cancer [D], 2020.
    [4] 何斌, 郑丽, 杨宇飞. 杨宇飞教授治疗结直肠癌经验 [J]. 吉林中医药,2013, 33(08): 770-773.HE B,ZHENG L,YANG Y F. Professor Yang Yufei''s Experience in Treating Colorectal Cancer[J]. Jilin Journal of Traditional Chinese Medicine,2013, 33(08): 770-773.
    [5] BARRESI V. Colorectal Cancer: From Pathophysiology to Novel Therapeutic Approaches [J]. Biomedicines, 2021, 9(12):1858.
    [6] LA VECCHIA S, SEBASTIáN C. Metabolic pathways regulating colorectal cancer initiation and progression [J]. Seminars in cell developmental biology, 2020, 98:63-70.
    [7] 申佳林, 赵小莹, 薛成成,等. 中药靶向Wnt信号通路防治结直肠癌研究进展 [J/OL]. 中国实验方剂学杂志,1-13.SHEN J L, ZHAO X Y, XUE C C,et al. Research progress on targeted Wnt signaling pathway in traditional Chinese medicine for the prevention and treatment of colorectal cancer [J].Chinese Journal of Experimental Traditional Medical Formulae [J/OL]. Chinese Journal of Experimental Traditional Medical Formulae,1-13.
    [8] The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer [J]. Nature, 2012, 487(7407): 330-337.
    [9] 朱恬恬, 东丽, 李畅,等. Hippo信号通路在结直肠癌中的研究进展 [J]. 中国医药导报,2024, 21(27):74-78.ZHU T T,DONG L,LI C,et al. Research progress of Hippo signaling pathway in colorectal cancer [J]. China Medical Herald,2024, 21(27):74-78.
    [10] IONESCU V A, GHEORGHE G, BACALBASA N, et al. Colorectal Cancer: From Risk Factors to Oncogenesis [J]. Medicina(Kaunas, Lithuania), 2023, 59(9):1646.
    [11] 董崇海, 曲玲, 赵清喜,等. 散发性结直肠癌、腺瘤组织中hMLH1和突变型p53表达 [J] .中国肿瘤,2007, 16(02): 123-126.DONG C H,QU L,ZHAO Q X,et al. Expression of hMLH1 and p53 in Sporadic Colorectal Carcinoma and Colorectal Adenoma [J] .China Caner,2007, 16(02): 123-126.
    [12] PABLA B, BISSONNETTE M, KONDA V J. Colon cancer and the epidermal growth factor receptor: Current treatment paradigms, the importance of diet, and the role of chemoprevention [J]. World journal of clinical oncology, 2015, 6(5): 133-141.
    [13] 刘秋宁, 祝雨田, 许云,等. VEGF信号通路在结直肠癌病理机制中的作用及中医药干预研究现状 [J/OL]. 中国实验方剂学杂志,1-11.LIU Q N,ZHU Y T,XU Y,et al. Role of VEGF Signaling Pathway in Pathological Mechanism of Colorectal Cancer and Research Status of TCM Intervention [J/OL]. Chinese Journal of Experimental Traditional Medical Formulae,1-11.
    [14] 张铭, 金爱花. 炎症细胞因子在结直肠癌发病机制中作用的研究进展 [J]. 中国老年学杂志, 2024, 44(19): 4856-4860.ZHANG M,JIN A H. Research progress on the role of inflammatory cytokines in the pathogenesis of colorectal cancer[J]. Chinese Journal of Gerontology, 2024, 44(19): 4856-4860.
    [15] ZHANG Q, LIU F, QIN L, et al. Characterization of TGFβ-associated molecular features and drug responses in gastrointestinal adenocarcinoma [J]. BMC gastroenterology, 2021, 21(1): 284.
    [16] 白建平, 邓宏, 张海波,等. 刘伟胜教授治疗大肠癌经验简介 [J].新中医,2010, 42(11): 132-133.BAI J P,DENG H,ZHANG H B,et al. Introduction to Professor Liu Weisheng''s Experience in Treating Colorectal Cancer[J]. Journal of New Chinese Medicine,2010, 42(11): 132-133.
    [17] 丁金芳, 黄云胜, 李明花,等. 施志明治疗大肠癌经验举要 [J]. 上海中医药杂志,2007, (05): 43-44.DING J F,HUANG Y S,LI M H,et al. Summary of Shi Zhiming''s Experience in Treating Colorectal Cancer [J]. Shanghai Journal of Traditional Chinese Medicine,2007, (05): 43-44.
    [18] 贾小强, 邱辉忠, 黄乃健,等. 大肠癌辨证分型与肿瘤浸润转移相关性的前瞻性研究 [J]. 中华中医药杂志, 2005,(06): 344-346.JIA X Q,QIU H Z,HUANG N J,et al. Prospective study on the correlation between syndrome differentiation and tumor infiltration and metastasis in colorectal cancer [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2005,(06): 344-346.
    [19] 刘曼曼, 余涛, 陈旻, 等. 大肠癌中医辨证分型研究进展 [J]. 四川中医 , 2012, 30(1): 45-47.LIU M M,YU T,CHEN M,et al. Progress in Traditional Chinese Medicine Syndrome Differentiation and Typing of Colorectal Cancer [J]. Sichuan Zhongyi, 2012, 30(1): 45-47.
    [20] KOBAEK-LARSEN M, THORUP I, DIEDERICHSEN A, et al. Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans [J]. Comparative medicine, 2000, 50(1): 16-26.
    [21] TANAKA T. Preclinical cancer chemoprevention studies using animal model of inflammation-associated colorectal carcinogenesis [J]. Cancers, 2012, 4(3): 673-700.
    [22] LEU J D, WANG B S, CHIU S J, et al. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models [J]. Oncology letters, 2016, 12(6): 4975-4982.
    [23] HUOT J R, PIN F, ESSEX A L, et al. MC38 Tumors Induce Musculoskeletal Defects in Colorectal Cancer [J]. International journal of molecular sciences, 2021, 22(3): 1486.
    [24] BüRTIN F, MULLINS C S, LINNEBACHER M. Mouse models of colorectal cancer: Past, present and future perspectives [J]. World journal of gastroenterology, 2020, 26(13): 1394-1426.
    [25] XU C, LI X, LIU P, et al. Patient-derived xenograft mouse models: A high fidelity tool for individualized medicine [J]. Oncology letters, 2019, 17(1): 3-10.
    [26] SHIMURA T, TODEN S, KOMAROVA N L, et al. A comprehensive in vivo and mathematic modeling-based kinetic characterization for aspirin-induced chemoprevention in colorectal cancer [J]. Carcinogenesis, 2020, 41(6): 751-760.
    [27] LO Y H, NOAH T K, CHEN M S, et al. SPDEF Induces Quiescence of Colorectal Cancer Cells byChanging the Transcriptional Targets of β-catenin [J]. Gastroenterology, 2017, 153(1): 205-218.
    [28] RIVERA M, FICHTNER I, WULF-GOLDENBERG A, et al. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine [J]. Neoplasia (New York, NY), 2021, 23(1): 21-35.
    [29] VAGHI C, MAURI G, AGOSTARA A G, et al. The predictive role of ERBB2 point mutations in metastatic colorectal cancer: A systematic review [J]. Cancer treatment reviews, 2023, 112:102488.
    [30] WERTMAN J, VEINOTTE C J, DELLAIRE G, et al. The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool [J]. Advances in experimental medicine and biology, 2016, 916:289-314.
    [31] LAM S H, CHUA H L, GONG Z, et al. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study [J]. Developmental and comparative immunology, 2004, 28(1): 9-28.
    [32] DI FRANCO G, USAI A, PICCARDI M, et al. Zebrafish Patient-Derived Xenograft Model to Predict Treatment Outcomes of Colorectal Cancer Patients [J]. Biomedicines, 2022, 10(7):1474.
    [33] MULLINS C S, MICHEEL B, MATSCHOS S, et al. Integrated Biobanking and Tumor Model Establishment of Human Colorectal Carcinoma Provides Excellent Tools for Preclinical Research [J]. Cancers, 2019, 11(10):1520.
    [34] CHO Y B, HONG H K, CHOI Y L, et al. Colorectal cancer patient-derived xenografted tumors maintain characteristic features of the original tumors [J]. The Journal of surgical research, 2014, 187(2): 502-509.
    [35] YANG R, YU Y. Patient-derived organoids in translational oncology and drug screening [J]. Cancer letters, 2023, 562:216180.
    [36] FUJII M, SHIMOKAWA M, DATE S, et al. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis [J]. Cell stem cell, 2016, 18(6): 827-838.
    [37] ZHANG H, QI L, DU Y, et al. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma [J]. Cancers, 2020, 12(6):1478.
    [38] FUMAGALLI A, SUIJKERBUIJK S J E, BEGTHEL H, et al. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression [J]. Nature protocols, 2018, 13(2): 235-247.
    [39] 罗晓蓓. 基于水凝胶培养的结直肠癌病人肿瘤衍生类器官(PDO)模型的建立及应用 [D], 2018.LUO X B. Development and Application of a Hydrogel-Based Model of Patient Derived Colorectal Cancer Organoids [D], 2018.
    [40] KANIKARLA MARIE P, SOROKIN A V, BITNER L A, et al. Autologous humanized mouse models to study combination and single-agent immunotherapy for colorectal cancer patient-derived xenografts [J]. Frontiers in oncology, 2022, 12:994333.
    [41] GOCK M, KüHN F, MULLINS C S, et al. Tumor Take Rate Optimization for Colorectal Carcinoma Patient-Derived Xenograft Models [J]. BioMed research international, 2016, 2016:1715053.
    [42] YUAN C, ZHAO X, WANGMO D, et al. Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer [J]. Pharmacology therapeutics, 2022, 231:107981.
    [43] JACKSTADT R, SANSOM O J. Mouse models of intestinal cancer [J]. The Journal of pathology, 2016, 238(2): 141-151.
    [44] NEUFERT C, BECKER C, NEURATH M F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression [J]. Nature protocols, 2007, 2(8): 1998-2004.
    [45] NASCIMENTO-GON?ALVES E, MENDES B A L, SILVA-REIS R, et al. Animal Models of Colorectal Cancer: From Spontaneous to Genetically Engineered Models and Their Applications [J]. Veterinary sciences, 2021, 8(4):59.
    [46] LIN R, PIAO M, SONG Y, et al. Quercetin Suppresses AOM/DSS-Induced Colon Carcinogenesis through Its Anti-Inflammation Effects in Mice [J]. Journal of immunology research, 2020, 2020:9242601.
    [47] 冯建华, 柳向军, 黄宇君, 等. 两种小鼠结直肠癌动物模型的特点比较与应用 [J]. 陆军军医大学学报,2024, 46(02): 91-99.FENG J H,LIU X J,HUANG Y J,et al. Comparison of 2 different mouse models of colorectal cancer and their application [J]. Journal of Army Medical University,2024, 46(02): 91-99.
    [48] 曾一文, 黎洁瑶, 田旷怡, 等. 通过AOM及AOM联合DSS建立C57BL/6J小鼠结肠癌诱导模型的对比研究 [J]. 新医学,2018, 49(10): 720-725.ZENG Y W, LI J Y, TIAN K Y, et al. Comparative analysis between application of AOM and AOM/DSS to establish C57BL/6J mouse models with colonic carcinogenesis [J]. Journal of New Medicine,2018, 49(10): 720-725.
    [49] ROSENBERG D W, GIARDINA C, TANAKA T. Mouse models for the study of colon carcinogenesis [J]. Carcinogenesis, 2009, 30(2): 183-196.
    [50] 赵秀丽. PhIP诱导结肠损伤的机制及葡萄籽提取物的预防作用研究 [D], 2021.ZHAO X L. Study on the mechanism of Phip-induced colon injury and the preventive effect of grape seed extract [D], 2021.
    [51] WANG H, ZHOU H, LIU A, et al. Genetic analysis of colon tumors induced by a dietary carcinogen PhIP in CYP1A humanized mice: Identification of mutation of β-catenin/Ctnnb1 as the driver gene for the carcinogenesis [J]. Molecular carcinogenesis, 2015, 54(11): 1264-1274.
    [52] JEDINAK A, DUDHGAONKAR S, JIANG J, et al. Pleurotus ostreatus inhibits colitis-related colon carcinogenesis in mice [J]. International journal of molecular medicine, 2010, 26(5): 643-650.
    [53] 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展 [J]. 实验动物与比较医学,2023, 43(5): 512-523.CHEN Y J,SHEN R L. Prgress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer. Laboratory Animal and Comparative Medicine,2023, 43(5): 512-523.
    [54] EVANS J P, SUTTON P A, WINIARSKI B K, et al. From mice to men: Murine models of colorectal cancer for use in translational research [J]. Critical reviews in oncology/hematology, 2016, 98:94-105.
    [55] 唐茂盛, 胡志前, 王伟军, 等. MNU灌肠诱导大鼠原位结肠癌及远处转移的模型建立 [J]. 实验动物与比较医学, 2010, 30(1): 12-16.TANG M S,HU Z Q,WANG W J,et al. Establishment of Orthotopic Colon Tumor and Metastasis Model by Coloclysis of MNU in Rat [J].? Laboratory Animal and Comparative Medicine, 2010, 30(1): 12-16.
    [56] 刘春安, 李明意, 姜海平, 等. n-3 PUFAs对MNU诱发大鼠结直肠癌形成的影响及机制 [J]. 中国普通外科杂志, 2015, 24(4): 522-526.LIU C A,LI M Y,JIANG H P,et al. Influence of n-3 PUFAs on colorectal tumor formation induced by MNU in rats and the mechanism [J].? China Journal of General Surgery, 2015, 24(4): 522-526.
    [57] YUSUF A, ODEH O E, ALHASSAN S O, et al. Evaluation of the preventive potential of graded dietary inclusion of Hyphaene thebaica (Linn) fruit in rat model of colon carcinogenesis [J]. Journal of food biochemistry, 2022, 46(12): e14446.
    [58] JOHNSON R L, FLEET J C. Animal models of colorectal cancer [J]. Cancer metastasis reviews, 2013, 32(1-2): 39-61.
    [59] 安庆玲, 谭邓旭, 师长宏. 结直肠癌基因工程小鼠模型研究进展 [J]. 中国实验动物学报, 2023, 31(05): 660-667.AN Q L,TAN D X,SHI C H. Genetically engineered mouse models of colorectal cancer [J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(05): 660-667.
    [60] LUONGO C, MOSER A R, GLEDHILL S, et al. Loss of Apc+ in intestinal adenomas from Min mice [J]. Cancer research, 1994, 54(22): 5947-5952.
    [61] KWONG L N, DOVE W F. APC and its modifiers in colon cancer [J]. Advances in experimental medicine and biology, 2009, 656(1):85-106.
    [62] AMOS-LANDGRAF J M, KWONG L N, KENDZIORSKI C M, et al. A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 4036-4041.
    [63] LEE K, TOSTI E, EDELMANN W. Mouse models of DNA mismatch repair in cancer research [J]. DNA repair, 2016, 38(1):140-146.
    [64] EDELMANN L, EDELMANN W. Loss of DNA mismatch repair function and cancer predisposition in the mouse: animal models for human hereditary nonpolyposis colorectal cancer [J]. American journal of medical genetics Part C Seminars in medical genetics, 2004, 129c(1): 91-99.
    [65] KOPELMAN D, SZOLD A, KOPELMAN Y, et al. Simulation of a colorectal polypoid lesion--a pilot porcine model [J]. Gastrointestinal endoscopy, 2008, 67(7): 1159-1167.
    [66] UNO H, ALSUM P, ZIMBRIC M L, et al. Colon cancer in aged captive rhesus monkeys (Macaca mulatta) [J]. American journal of primatology, 1998, 44(1): 19-27.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:22
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:December 27,2024
  • Revised:April 16,2025
  • Adopted:May 22,2025
Article QR Code