Research status of evaluation and application of locomotion in rats
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [66]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Locomotion is one of the most vital and fundamental motor behaviors in rats, which can reflect the performance and characteristics of motion in various experimental animal models, it has an important clinical significance to motor dysfunction rating and rehabilitation effect evaluation grade for developing an evaluation method and standard of locomotion in rats. This article will comprehensively analysis and review the literatures of locomotion in rats on the evaluation methodology and typical application in order to provide necessary reference for researchers.

    Reference
    [1] Blickhan R, Seyfarth A, Geyer H, et al. Intelligence by mechanics[J]. Philos Trans A Math Phys Eng Sci, 2007, 365(1850):199-220.
    [2] 周鹏. 德国牧羊犬步态分析及运动仿真[D]. 长春:吉林大学, 2007:3-4.
    [3] Karamia M, Bathaiea SZ, Tiraihib T, et al. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide[J]. Phytomedicine, 2013, 21(1):62-67.
    [4] De Santis M, Pan B, Lian J, et al. Different effects of Bifeprunox, Aripiprazole, and Haloperidol on body weight gain, food and water intake, and locomotor activity in rats[J]. Pharmacol Biochem Behav, 2014, 124:167-173.
    [5] Antonioua K, Kafetzopoulosa E, Papadopoulou-Daifoti Z, et al. Damphetamine, cocaine and caffeine:a comparative study of acute effects on locomotor activity and behavioural patterns in rats[J]. Neurosci Biobehav Rev, 1998, 23(2):189-196.
    [6] 魏翔, 刘晓莉. 帕金森病大鼠模型运动行为测评方法的研究进展[J]. 中国实验动物学报, 2015, 23(2):209-215.
    [7] Grillner S. Locomotion in vertebrates:central mechanisms and reflex interaction[J]. Physiol Rev., 1975, 55(2):247-304.
    [8] Singha A, Krisab L, Frederickb KL, et al. Forelimb locomotor rating scale for behavioral assessment of recovery after unilateral cervical spinal cord injury in rats[J]. J Neurosci Methods, 2014, 226:124-131.
    [9] Tarlov IM, Klinger H. Spinal cord compression studies. Ⅱ. Time limits for recovery after acute compression in dogs[J]. AMA Arch Neurol Psychiatry, 1954, 71(3):271-290.
    [10] Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats:partial restoration of hind limb function[J]. Science, 1996, 273(5274):510-513.
    [11] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1):1-21.
    [12] Evans RM, Davies M. ScoreCentre:A computer program to assist with collection and calculation of BBB locomotor scale data[J]. J Neurosci Methods, 2010, 194(1):102-107.
    [13] Gale K, Kerasidis H, Wrathall JR. Spinal cord contusion in the rat:behavioral analysis of functional neurologic impairment[J]. Exp Neurol, 1985, 88(1):123-134.
    [14] Guertin PA. Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice[J]. SpinalCord, 2005, 43(3):162-166.
    [15] Singh A, Krisa L, Frederick KL, et al. Forelimb locomotor rating scale for behavioral assessment of recovery after unilateral cervical spinal cord injury in rats[J]. J Neurosci Methods, 2014, 226(8):124-131.
    [16] Wong JK, Sharp K, Steward O. A straight alley version of the BBB locomotor scale[J]. Exp Neurol, 2009, 217(2):417-420.
    [17] Popovich PG, Tovar CA, Wei P, et al. A reassessment of a classic neuroprotective combination therapy for spinal cord injured rats:LPS/pregnenolone/indomethacin[J]. Exp Neurol, 2012, 233(2):677-685.
    [18] 徐冬晨, 王红星, 王彤. 大鼠部分重量支撑平板训练新模型在不完全性脊髓损伤运动功能改善中的应用[J]. 中国康复医学杂志, 2010, 25(8):721-724.
    [19] Eftaxiopoulou T, Macdonald W, Britzman D, et al. Gait compensations in rats after a temporary nerve palsy quantified using temporo-spatial and kinematic parameters[J]. J Neurosci Methods, 2014, 232:16-23.
    [20] Whishaw IQ, Kolb B. The behavior of the laboratory rat:a handbook with tests[M]. New York:Oxford University Press, 2005.150.
    [21] Kloefkorn HE, Jacobs BY, Loye AM, et al. Spatiotemporal gait compensations following medial collateral ligament and medial meniscus injury in the rat:correlating gait patterns to joint damage[J]. Arthritis Res Ther, 2015, 17(1):287.
    [22] Hildebrand M. The quadrupedal gaits of vertebrates[J]. BioScience, 1989, 39(11):766-775.
    [23] Koopmans GC, Deumens R, Brook G, et al. Strain and locomotor speed affect over-ground locomotion in intact rats[J]. Physiol Behav, 2007, 92(5):993-1001.
    [24] Gorska T, Zmysłowski W, Majczyński H. Overground locomotion in intact rats:interlimb coordination, support patterns and support phases duration[J]. Acta Neurobiol Exp (Wars), 1999, 59(2):131-144.
    [25] Fischer MS, Schilling N, Schmidt M, et al. Basic limb kinematics of small therian mammals[J]. J Exp Biol, 2002, 205:1315-1338.
    [26] 田为军. 德国牧羊犬运动特性及其运动模型研究[D].长春:吉林大学,2011:3-4.
    [27] Monte-Raso VV, Barbieri G, Mazzer N, et al. A new treadmill-type motorized walking belt machine for video recording of the Rat's gait and sciatic functional index measurement. A comparative study with other methods[J]. J Neurosci Methods, 2010, 189(1):23-29.
    [28] Piesla MJ, Leventhal L, Strassle BW, et al. Abnormal gait, due to inflammation but not nerve injury, reflects enhanced nociception in preclinical pain models[J]. Brain Res, 2009, 1295:89-98.
    [29] Jacobs BY, Kloefkorn HE, Allen KD. Gait analysis methods for rodent models of osteoarthritis[J]. Curr Pain Headache Rep, 2014, 18(456):1-11.
    [30] Metz GA, Merkler D, Dietz V, et al. Efficient testing of motor function in spinal cord injured rats[J]. Brain Res, 2000, 883(2):165-177.
    [31] Ma SF, Chen Y J, Zhang J X, et al. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury[J]. Brain Behav Immun, 2015, 45:157-170.
    [32] Hamers FP, Lankhorst AJ, van Laar TJ, et al. Automated quantitative gait analysis during overground locomotion in the rat:its application to spinal cord contusion and transection injuries[J]. J Neurotrauma, 2001, 18(2):187-201.
    [33] Zhou M, Zhang W, Chang J, et al. Gait analysis in three different 6-hydroxydopamine rat models of Parkinson's disease[J]. Neurosci Lett, 2015, 584:184-189.
    [34] Dorman CW, Krug HE, Frizelle SP, et al. A comparison of DigiGaitTM and TreadScanTM imaging systems:assessment of pain using gait analysis in murine monoarthritis[J]. J Pain Res, 2014, 7:25-35.
    [35] Fischer MS, Schilling N, Schmidt M,et al. Basic limb kinematics of small therian mammals[J]. J Exp Biol, 2002, 205(9):1315-1338.
    [36] Tashman S, Anderst W. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT:application to canine ACL deficiency[J]. J Biomech Eng, 2003, 125(2):238-245.
    [37] Roland ES, Hull ML, Stover SM. Design and demonstration of a dynamometric horseshoe for measuring ground reaction loads of horses during racing conditions[J]. J Biomech, 2005, 38(10):2102-2112.
    [38] Johnson WL, Jindrich DL, Roy RR, et al. Quantitative metrics of spinal cord injury recovery in the rat using motion capture, electromyography and ground reaction force measurement[J]. J Neurosci Methods, 2012, 206(1):65-72.
    [39] Handley DE, Ross JF, Carr GJ. A Force Plate System for Measuring Low-Magnitude Reaction Forces in Small Laboratory Animals[J]. Physiol Behav, 1998, 64(5):661-669.
    [40] Zumwalta AC, Hamrick M, Schmitta D. Force plate for measuring the ground reaction forces in small animal locomotion[J]. J Biomech, 2006, 39(15):2877-2881.
    [41] Reaz MIB, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis:detection, classi cation and applications[J]. Biol Proced Online, 2006, 8(1):11-35.
    [42] Muir GD, Whishaw IQ. Red nucleus lesions impair overground locomotion in rats:A kinetic analysis[J]. Eur J Neurosci, 2000, 12(3):1113-1122.
    [43] Basmajian JV, De Luca C. Muscles alive:Their functions revealed by electromyography[M]. Baltimore:Williams and Wilkins, 1985.112.
    [44] Biedermann F, Schumann NP, Fischer MS, et al. EMG-recordings using a miniaturised matrix electrode:a new technique for small animals[J]. J Neurosci Methods, 2000, 97(1):69-75.
    [45] Canu MH, Garnier C, Lepoutre FX, et al. A 3D analysis of hindlimb motion during treadmill locomotion in rats after a 14-day episode of simulated microgravity[J]. Behav Brain Res, 2005, 157(2):309-321.
    [46] Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test:a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination[J]. J Neurosci Methods, 2002, 115(2):169-179.
    [47] Riek-Burchardt M, Henrich-Noack P, Metz GA, et al. Detection of chronic sensorimotor impairments in the ladder rung walking task in rats with endothelin-1-induced mild focal ischemia[J]. J Neurosci Methods, 2004, 137(2):227-233.
    [48] Chou KH, Lin WC, Lee PL, et al. Structural covariance networks of striatum subdivision in patients with Parkinson's disease[J]. Hum Brain Mapp, 2015, 36(4):1567-1584.
    [49] 余文娟, 彭蓉. 帕金森病冻结步态的研究进展[J]. 华西医学, 2014, 29(1):155-159.
    [50] Nanhoe-Mahabier w, Snijders AH, Delval A, et al. Split-belt locomotion in Parkinson's disease with and without freezing of gait[J]. Neuroscience, 2013, 236:110-116.
    [51] Tang WL, McDowell K, Limsam M, et al. Locomotion analysis of Sprague-Dawley rats before and after injecting 6-OHDA[J]. Behav Brain Res, 2010, 210(1):131-133.
    [52] Madete JK, Klein A, Dunnett SB, et al. Three-dimensional motion analysis of postural adjustments during over-ground locomotion in a rat model of Parkinson's disease[J]. Behav Brain Res, 2011, 220(1):119-125.
    [53] 王军. 6-羟基多巴胺致偏侧帕金森病大鼠的CatWalk行为学研究[D].深圳:南方医科大学, 2012:3-4.
    [54] Lakes EH, Allen KD. Gait analysis methods for rodent models of arthritic disorders:reviews and recommendations[J]. Osteoarthritis Cartilage, 2016, 3:1-13.
    [55] Chao OY, Pum ME, Li JS, et al. The grid-walking test:assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle[J]. Neuroscience, 2012, 202:318-325.
    [56] Chao OY, Wang AL, Nikolaus S. NK 3 receptor agonism reinstates temporal order memory in the hemiparkinsonian rat[J]. Behav. Brain Res, 2015, 285:208-212.
    [57] Asakawa T, Fang H, Sugiyama K, et al. Animal behavioral assessments in current research of Parkinson's disease[J]. Neurosci Biobehav Rev, 2016, 65:63-94.
    [58] 潘钰, 郄淑燕. 脊髓损伤神经功能定量评价研究进展[J]. 中国康复医学杂志, 2014, 29(4):379-385.
    [59] Oliveri RS, Bello S, Biering-Sørensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury:Systematic review with meta-analyses of rat models[J]. Neurobiol Dis, 2014, 62:338-353.
    [60] Wu M, Landry JM, Schmit BD, et al. Robotic resistance treadmill training improves locomotor function in human spinal cord injury:a pilot study[J]. Arch Phys Med Rehabil, 2012, 93(5):782-789.
    [61] Jin Y, Bouyer J, Shumsky JS, et al. Transplantation of neural progenitor cells in chronic spinal cord injury[J]. Neuroscience, 2016, 21(320):69-82.
    [62] Sun Y, Liu D, Su P, et al. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy[J]. Neurosci Lett, 2016, 618:139-145.
    [63] Lee SH, Kim Y, Rhew D, et al. Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury[J]. Cytotherapy, 2015, 17(10):1374-1383.
    [64] Redondo-Castro E, Torres-Espín A, García-Alías G, et al. Quantitative assessment of locomotion and interlimb coordination in rats after different spinal cord injuries[J]. J Neurosci Methods, 2013, 213(2):165-178.
    [65] Knuttgen HG, Vogel JA, Poortmans JR, et al. Biochemistry of Exercise[M]. Boston:Human Kinetics Publishers,1983.63-75.
    [66] 田野, 高铁群. 大鼠运动性疲劳模型的建立[J]. 北京体育大学学报, 1995, 18(4):49-53.
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:1641
  • PDF: 4029
  • HTML: 0
  • Cited by: 0
History
  • Revised:April 18,2016
  • Online: July 28,2016
Article QR Code